455
Views
0
CrossRef citations to date
0
Altmetric
Reviews

β-Diketiminate and β-Ketoiminate Metal Catalysts for Ring-Opening Polymerization of Cyclic Esters

, &
Pages 478-514 | Received 02 Feb 2022, Accepted 01 Sep 2022, Published online: 13 Sep 2022

References

  • Laycock, B.; Nikolić, M.; Colwell, J. M.; Gauthier, E.; Halley, P.; Bottle, S.; George, G. Lifetime Prediction of Biodegradable Polymers. Prog. Polym. Sci 2017, 71, 144–189. DOI: 10.1016/j.progpolymsci.2017.02.004.
  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci Adv 2017, 3, e1700782. DOI: 10.1126/sciadv.1700782.
  • Ostle, C.; Thompson, R. C.; Broughton, D.; Gregory, L.; Wootton, M.; Johns, D. G. The Rise in Ocean Plastics Evidenced from a 60-Year Time Series. Nat Commun 2019, 10, 1622. DOI: 10.1038/s41467-019-09506-1.
  • Yu, L.; Dean, K.; Li, L. Polymer Blends and Composites from Renewable Resources. Prog. Polym. Sci 2006, 31, 576–602. DOI: 10.1016/j.progpolymsci.2006.03.002.
  • Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater 2000, 12, 1841–1846. DOI: 10.1002/1521-4095(200012)12:23 < 1841:AID-ADMA1841>3.0.CO;2-E.
  • Albertsson, A.-C.; Varma, I. K.; et al. Aliphatic Polyesters: Synthesis, Properties and Applications. In Degradable Aliphatic Polyesters; Abe, A., Albertsson, A.-C., Cantow, H.-J., Dušek, K., Edwards, S., Höcker, H., Joanny, J.-F., Kausch, H.-H., Lee, K.-S., McGrath, J. EEds.; Springer: Berlin, Heidelberg, 2002; pp 1–40
  • Corma, A.; Iborra, S.; Velty, A. Chemical Routes for the Transformation of Biomass into Chemicals. Chem Rev 2007, 107, 2411–2502. DOI: 10.1021/cr050989d.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem Soc Rev 2009, 38, 3484–3504. DOI: 10.1039/b820162p.
  • Arbaoui, A.; Redshaw, C. Metal Catalysts for ε-Caprolactone Polymerisation. Polym. Chem 2010, 1, 801. DOI: 10.1039/b9py00334g.
  • Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A. Metal-Catalyzed Immortal Ring-Opening Polymerization of Lactones, Lactides and Cyclic Carbonates. Dalton Trans 2010, 39, 8363–8376. DOI: 10.1039/c001226b.
  • Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chem Rev 2018, 118, 839–885. DOI: 10.1021/acs.chemrev.7b00329.
  • Martina, M.; Hutmacher, D. W. Biodegradable Polymers Applied in Tissue Engineering Research: A Review. Polym. Int 2007, 56, 145–157. DOI: 10.1002/pi.2108.
  • Platel, R.; Hodgson, L.; Williams, C. Biocompatible Initiators for Lactide Polymerization. Polymer Revs 2008, 48, 11–63. DOI: 10.1080/15583720701834166.
  • Zhang, J.; Jian, C.; Gao, Y.; Wang, L.; Tang, N.; Wu, J. Synthesis and Characterization of Multi-Alkali-Metal Tetraphenolates and Application in Ring-Opening Polymerization of Lactide. Inorg Chem 2012, 51, 13380–13389. DOI: 10.1021/ic302193y.
  • Roberts, C. C.; Barnett, B. R.; Green, D. B.; Fritsch, J. M. Synthesis and Structures of Tridentate Ketoiminate Zinc Complexes That Act As l -Lactide Ring-Opening Polymerization Catalysts. Organometallics 2012, 31, 4133–4141. DOI: 10.1021/om200865w.
  • Yu, X.-F.; Zhang, C.; Wang, Z.-X. Rapid and Controlled Polymerization of rac -Lactide Using N,N,O-Chelate Zinc Enolate Catalysts. Organometallics 2013, 32, 3262–3268. DOI: 10.1021/om400193z.
  • Vieira, IdS.; Whitelaw, E. L.; Jones, M. D.; Herres-Pawlis, S. Synergistic Empirical and Theoretical Study on the Stereoselective Mechanism for the Aluminum Salalen Complex Mediated Polymerization of Rac-Lactide. Chemistry 2013, 19, 4712–4716. DOI: 10.1002/chem.201203973.
  • Langer, R.; Tirrell, D. A. Designing Materials for Biology and Medicine. Nature 2004, 428, 487–492. DOI: 10.1038/nature02388.
  • Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem Rev 2004, 104, 6147–6176. DOI: 10.1021/cr040002s.
  • Williams, C. K. Synthesis of Functionalized Biodegradable Polyesters. Chem Soc Rev 2007, 36, 1573–1580. DOI: 10.1039/b614342n.
  • Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A. Biocompatibility and Safety of PLA and Its Copolymers. Adv Drug Deliv Rev 2016, 107, 153–162. DOI: 10.1016/j.addr.2016.03.012.
  • Hong, M.; Chen, J.; Chen, E. Y.-X. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem Rev 2018, 118, 10551–10616. DOI: 10.1021/acs.chemrev.8b00352.
  • Wang, Q.; Zhao, W.; He, J.; Zhang, Y.; Chen, E. Y.-X. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism. Macromolecules 2017, 50, 123–136. DOI: 10.1021/acs.macromol.6b02398.
  • Naumann, S.; Scholten, P. B. V.; Wilson, J. A.; Dove, A. P. Dual Catalysis for Selective Ring-Opening Polymerization of Lactones: Evolution toward Simplicity. J Am Chem Soc 2015, 137, 14439–14445. DOI: 10.1021/jacs.5b09502.
  • Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G. G.; Hedrick, J. L. Organocatalytic Ring-Opening Polymerization. Chem Rev 2007, 107, 5813–5840. DOI: 10.1021/cr068415b.
  • Hong, M.; Tang, X.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y.-X. Proton-Transfer Polymerization by N-Heterocyclic Carbenes: Monomer and Catalyst Scopes and Mechanism for Converting Dimethacrylates into Unsaturated Polyesters. J Am Chem Soc 2016, 138, 2021–2035. DOI: 10.1021/jacs.5b13019.
  • Falivene, L.; Cavallo, L. Guidelines to Select the N-Heterocyclic Carbene for the Organopolymerization of Monomers with a Polar Group. Macromolecules 2017, 50, 1394–1401. DOI: 10.1021/acs.macromol.6b02646.
  • Naumann, S.; Dove, A. P. N-Heterocyclic Carbenes as Organocatalysts for Polymerizations: trends and Frontiers. Polym. Chem 2015, 6, 3185–3200. DOI: 10.1039/C5PY00145E.
  • Zhi, X.; Liu, J.; Li, Z.; Wang, H.; Wang, X.; Cui, S.; Chen, C.; Zhao, C.; Li, X.; Guo, K. Ionic Hydrogen Bond Donor Organocatalyst for Fast Living Ring-Opening Polymerization. Polym. Chem 2016, 7, 339–349. DOI: 10.1039/C5PY01315A.
  • Kazakov, O. I.; Kiesewetter, M. K. Cocatalyst Binding Effects in Organocatalytic Ring-Opening Polymerization of L-Lactide. Macromolecules 2015, 48, 6121–6126. DOI: 10.1021/acs.macromol.5b01140.
  • Spink, S. S.; Kazakov, O. I.; Kiesewetter, E. T.; Kiesewetter, M. K. Rate Accelerated Organocatalytic Ring-Opening Polymerization of L-Lactide via the Application of a Bis(Thiourea) H-Bond Donating Cocatalyst. Macromolecules 2015, 48, 6127–6131. DOI: 10.1021/acs.macromol.5b01320.
  • Kremer, A. B.; Mehrkhodavandi, P. Dinuclear Catalysts for the Ring Opening Polymerization of Lactide. Coord. Chem. Rev 2019, 380, 35–57. DOI: 10.1016/j.ccr.2018.09.008.
  • Sarazin, Y.; Carpentier, J.-F. Discrete Cationic Complexes for Ring-Opening Polymerization Catalysis of Cyclic Esters and Epoxides. Chem Rev 2015, 115, 3564–3614. DOI: 10.1021/acs.chemrev.5b00033.
  • Osten, K. M.; Mehrkhodavandi, P. Indium Catalysts for Ring Opening Polymerization: Exploring the Importance of Catalyst Aggregation. Acc Chem Res 2017, 50, 2861–2869. DOI: 10.1021/acs.accounts.7b00447.
  • Ghosh, S.; Chakraborty, D.; Ramkumar, V. Imino(Phenoxide) Compounds of Magnesium: Synthesis, Structural Characterization, and Polymerization Studies. J. Polym. Sci. Part A: Polym. Chem 2015, 53, 1474–1491. DOI: 10.1002/pola.27579.
  • Yang, Y.; Wang, H.; Ma, H. Stereoselective Polymerization of rac-Lactide Catalyzed by Zinc Complexes with Tetradentate Aminophenolate Ligands in Different Coordination Patterns: Kinetics and Mechanism. Inorg Chem 2015, 54, 5839–5854. DOI: 10.1021/acs.inorgchem.5b00558.
  • Ghosh, S.; Gowda, R. R.; Jagan, R.; Chakraborty, D. Gallium and Indium Complexes Containing the Bis(Imino)Phenoxide Ligand: synthesis, Structural Characterization and Polymerization Studies. Dalton Trans 2015, 44, 10410–10422. DOI: 10.1039/c5dt00811e.
  • Dagorne, S.; Normand, M.; Kirillov, E.; Carpentier, J.-F. Gallium and Indium Complexes for Ring-Opening Polymerization of Cyclic Ethers, Esters and Carbonates. Coord. Chem. Rev 2013, 257, 1869–1886. DOI: 10.1016/j.ccr.2013.02.012.
  • Kricheldorf, H. R. Syntheses of biodegradable and biocompatible Polymers by Means of Bismuth Catalysts. Chem Rev 2009, 109, 5579–5594. DOI: 10.1021/cr900029e.
  • Chmura, A. J.; Chuck, C. J.; Davidson, M. G.; Jones, M. D.; Lunn, M. D.; Bull, S. D.; Mahon, M. F. A Germanium Alkoxide Supported by a C3-Symmetric Ligand for the Stereoselective Synthesis of Highly Heterotactic Polylactide under Solvent-Free Conditions. Angew Chem Int Ed Engl 2007, 46, 2280–2283. DOI: 10.1002/anie.200603944.
  • WU, J.; YU, T.; CHEN, C.; LIN, C. Recent Developments in Main Group Metal Complexes Catalyzed/Initiated Polymerization of Lactides and Related Cyclic Esters. Coord. Chem. Rev 2006, 250, 602–626. DOI: 10.1016/j.ccr.2005.07.010.
  • Horeglad, P.; Cybularczyk, M.; Trzaskowski, B.; Żukowska, G. Z.; Dranka, M.; Zachara, J. Dialkylgallium Alkoxides Stabilized with N -Heterocyclic Carbenes: Opportunities and Limitations for the Controlled and Stereoselective Polymerization of rac-Lactide. Organometallics 2015, 34, 3480–3496. DOI: 10.1021/acs.organomet.5b00071.
  • Gao, J.; Zhu, D.; Zhang, W.; Solan, G. A.; Ma, Y.; Sun, W. Recent Progress in the Application of Group 1, 2 & 13 Metal Complexes as Catalysts for the Ting Opening Polymerization of Cyclic Esters. Inorg. Chem. Front 2019, 6, 2619–2652. DOI: 10.1039/C9QI00855A.
  • Yue, E.; Cao, F.; Zhang, J.; Zhang, W.; Jiang, Y.; Liang, T.; Sun, W. Bimetallic Aluminium Complexes Bearing Novel Spiro-Phenanthrene-Monoketone/OH Derivates: synthesis, Characterization, and the Ring-Opening Polymerization of ε-Caprolactone. RSC Adv 2021, 11, 13274–13281. DOI: 10.1039/d1ra01288f.
  • Gao, J.; Zhang, W.; Cao, F.; Solan, G. A.; Zhang, X.; Jiang, Y.; Hao, X.; Sun, W. Potassium N-Arylbenzimidates as Readily Accessible and Benign (Pre)Catalysts for the Ring Opening Polymerization of ε-CL and L-LA. Mol. Catal 2020, 498, 111280–111291. DOI: 10.1016/j.mcat.2020.111280.
  • Stridsberg, K. M.; Ryner, M.; Albertsson, A.-C.; et al. Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture. In Degradable Aliphatic Polyesters; Abe, A., Albertsson, A.-C., Cantow, H.-J., Dušek, K., Edwards, S., Höcker, H., Joanny, J.-F., Kausch, H.-H., Lee, K.-S., McGrath, J. E., Eds.; Springer: Berlin, Heidelberg, 2002; pp 41–65
  • Sobczak, M.; Kolodziejski, W. Polymerization of Cyclic Esters Initiated by Carnitine and Tin (II) Octoate. Molecules 2009, 14, 621–632. DOI: 10.3390/molecules14020621.
  • Schwach, G.; Coudane, J.; Engel, R.; Vert, M. Ring Opening Polymerization of D,L-Lactide in the Presence of Zinc Metal and Zinc Lactate. Polym. Int 1998, 46, 177–182. DOI: 10.1002/(SICI)1097-0126(199807)46:3 < 177:.
  • Degée, P.; Dubois, P.; Jérôme, R. Bulk Polymerization of Lactides Initiated by Aluminum Isopropoxide, 3. Thermal Stability and Viscoelastic Properties. Macromol. Chem. Phys. 1997 1985, 198, 1995. – DOI: 10.1002/macp.1997.021980624:AID-PI937>3.0.CO;2-S.
  • A.P. de, G.; Feron, V. J.; Til, H. P. Short-Term Toxicity Studies on Some Salts and Oxides of Tin in Rats. Food Chem. Toxicol 1973, 11, 19–30. DOI: 10.1016/0015-6264(73)90058-8.
  • Ghosh, S.; Chakraborty, D.; Varghese, B. Group 1 Salts of the Imino(Phenoxide) Scaffold: Synthesis, Structural Characterization and Studies as Catalysts towards the Bulk Ring Opening Polymerization of Lactides. Eur. Polym. J 2015, 62, 51–65. DOI: 10.1016/j.eurpolymj.2014.10.010.
  • Saito, T.; Aizawa, Y.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T. Alkali Metal Carboxylate as an Efficient and Simple Catalyst for Ring-Opening Polymerization of Cyclic Esters. Macromolecules 2018, 51, 689–696. DOI: 10.1021/acs.macromol.7b02566.
  • Devaine-Pressing, K.; Oldenburg, F. J.; Menzel, J. P.; Springer, M.; Dawe, L. N.; Kozak, C. M. Lithium, Sodium, Potassium and Calcium Amine-Bis(Phenolate) Complexes in the Ring-Opening Polymerization of Rac-Lactide. Dalton Trans 2020, 49, 1531–1544. DOI: 10.1039/c9dt04561a.
  • Cui, Y.; Jiang, J.; Mao, X.; Wu, J. Mononuclear Salen-Sodium Ion Pairs as Catalysts for Isoselective Polymerization of rac-Lactide. Inorg Chem 2019, 58, 218–227. DOI: 10.1021/acs.inorgchem.8b02290.
  • Li, X.; Jia, Z.; Pan, X.; Wu, J. Isoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Sodium/Potassium Tetradentate Aminobisphenolate Ion-Paired Complexes. Chem Asian J 2019, 14, 662–669. DOI: 10.1002/asia.201801834.
  • Darensbourg, D. J.; Choi, W.; Karroonnirun, O.; Bhuvanesh, N. Ring-Opening Polymerization of Cyclic Monomers by Complexes Derived from Biocompatible Metals. Production of Poly(Lactide), Poly(Trimethylene Carbonate), and Their Copolymers. Macromolecules 2008, 41, 3493–3502. DOI: 10.1021/ma800078t.
  • Wu, J.; Chen, Y.-Z.; Hung, W.-C.; Lin, C.-C. Preparation, Characterization, and Catalytic Studies of Magnesium Phenoxides: Highly Active Initiators for Ring-Opening Polymerization of L-Lactide. Organometallics 2008, 27, 4970–4978. DOI: 10.1021/om800482j.
  • Wang, Y.; Zhao, W.; Liu, X.; Cui, D.; Chen, E. Y.-X. Ligand-Free Magnesium Catalyst System: Immortal Polymerization of l -Lactide with High Catalyst Efficiency and Structure of Active Intermediates. Macromolecules 2012, 45, 6957–6965. DOI: 10.1021/ma3007625.
  • Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. Polymerization of Lactide with Zinc and Magnesium Beta-Diiminate Complexes: stereocontrol and Mechanism. J Am Chem Soc 2001, 123, 3229–3238. DOI: 10.1021/ja003851f.
  • Sarazin, Y.; Roşca, D.; Poirier, V.; Roisnel, T.; Silvestru, A.; Maron, L.; Carpentier, J.-F. Bis(Dimethylsilyl)Amide Complexes of the Alkaline-Earth Metals Stabilized by β-Si − H Agostic Interactions: Synthesis, Characterization, and Catalytic Activity. Organometallics 2010, 29, 6569–6577. DOI: 10.1021/om100908q.
  • Cushion, M. G.; Mountford, P. Cationic and Charge-Neutral Calcium Tetrahydroborate Complexes and Their Use in the Controlled Ring-Opening Polymerisation of Rac-Lactide. Chem Commun (Camb) 2011, 47, 2276–2278. DOI: 10.1039/c0cc04348f.
  • Sarazin, Y.; Liu, B.; Roisnel, T.; Maron, L.; Carpentier, J.-F. Discrete, Solvent-Free Alkaline-Earth Metal Cations: metal·Fluorine Interactions and ROP Catalytic Activity. J. Am. Chem. Soc 2011, 133, 9069–9087. DOI: 10.1021/ja2024977.
  • Schäfer, P. M.; McKeown, P.; Fuchs, M.; Rittinghaus, R. D.; Hermann, A.; Henkel, J.; Seidel, S.; Roitzheim, C.; Ksiazkiewicz, A. N.; Hoffmann, A.; et al. Tuning a Robust System: N,O Zinc Guanidine Catalysts for the ROP of Lactide. Dalton Trans 2019, 48, 6071–6082. DOI: 10.1039/c8dt04938f.
  • Wang, H.; Yang, Y.; Ma, H. Exploring Steric Effects in Diastereoselective Synthesis of Chiral Aminophenolate Zinc Complexes and Stereoselective Ring-Opening Polymerization of rac-Lactide. Inorg Chem 2016, 55, 7356–7372. DOI: 10.1021/acs.inorgchem.6b00378.
  • Ebrahimi, T.; Mamleeva, E.; Yu, I.; Hatzikiriakos, S. G.; Mehrkhodavandi, P. The Role of Nitrogen Donors in Zinc Catalysts for Lactide Ring-Opening Polymerization. Inorg Chem 2016, 55, 9445–9453. DOI: 10.1021/acs.inorgchem.6b01722.
  • Thevenon, A.; Romain, C.; Bennington, M. S.; White, A. J. P.; Davidson, H. J.; Brooker, S.; Williams, C. K. Dizinc Lactide Polymerization Catalysts: Hyperactivity by Control of Ligand Conformation and Metallic Cooperativity. Angew Chem Int Ed Engl 2016, 55, 8680–8685. DOI: 10.1002/anie.201602930.
  • Wang, J.-H.; Tsai, C.-Y.; Su, J.-K.; Huang, B.-H.; Lin, C.-C.; Ko, B.-T. Mono-, di- and Tetra-Zinc Complexes Derived from an Amino-Benzotriazole Phenolate Ligand Containing a Bulkier N-Alkyl Pendant Arm: synthesis, Structure and Catalysis for Ring-Opening Polymerization of Cyclic Esters. Dalton Trans 2015, 44, 12401–12410. DOI: 10.1039/c4dt02906b.
  • Wang, H.; Ma, H. Highly Diastereoselective Synthesis of Chiral Aminophenolate Zinc Complexes and Isoselective Polymerization of Rac-Lactide. Chem Commun (Camb) 2013, 49, 8686–8688. DOI: 10.1039/c3cc44980g.
  • Fliedel, C.; Rosa, V.; Alves, F. M.; Martins, A. M.; Avilés, T.; Dagorne, S. P,O-Phosphinophenolate Zinc(II) Species: synthesis, Structure and Use in the Ring-Opening Polymerization (ROP) of Lactide, ε-Caprolactone and Trimethylene Carbonate. Dalton Trans 2015, 44, 12376–12387. DOI: 10.1039/c5dt00458f.
  • Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. Single-Site Beta-Diiminate Zinc Catalysts for the Ring-Opening Polymerization of Beta-Butyrolactone and Beta-Valerolactone to Poly(3-Hydroxyalkanoates). J Am Chem Soc 2002, 124, 15239–15248. DOI: 10.1021/ja020978r.
  • Ma, W.-A.; Wang, Z.-X. Zinc and Aluminum Complexes Supported by Quinoline-Based N,N,N-Chelate Ligands: Synthesis, Characterization, and Catalysis in the Ring-Opening Polymerization of ε-Caprolactone and rac-Lactide. Organometallics 2011, 30, 4364–4373. DOI: 10.1021/om200423g.
  • Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young, V. G.; Hillmyer, M. A.; Tolman, W. B. A Highly Active Zinc Catalyst for the Controlled Polymerization of Lactide. J. Am. Chem. Soc 2003, 125, 11350–11359. DOI: 10.1021/ja0359512.
  • Wang, Y.; Liu, B.; Wang, X.; Zhao, W.; Liu, D.; Liu, X.; Cui, D. Immortal Ring-Opening Polymerization of ε-Caprolactone by a Neat Magnesium Catalyst System: an Approach to Obtain Block and Amphiphilic Star Polymers in Situ. Polym. Chem 2014, 5, 4580–4588. DOI: 10.1039/C4PY00384E.
  • Piao, L.; Deng, M.; Chen, X.; Jiang, L.; Jing, X. Ring-Opening Polymerization of ε-Caprolactone and l-Lactide Using Organic Amino Calcium Catalyst. Polymer 2003, 44, 2331–2336. DOI: 10.1016/S0032-3861(03)00118-6.
  • Balasanthiran, V.; Chisholm, M. H.; Choojun, K.; Durr, C. B. Ethyl 2-Hydroxy-2-Methylpropanoate Derivatives of Magnesium and Zinc. The Effect of Chelation on the Homo- and Copolymerization of Lactide and ε-Caprolactone. Dalton Trans 2014, 43, 2781–2788. DOI: 10.1039/c3dt52553h.
  • Collins, R. A.; Unruangsri, J.; Mountford, P. Synthesis and Rac-Lactide Ring-Opening Polymerisation Studies of New Alkaline Earth Tetrahydroborate Complexes. Dalton Trans 2013, 42, 759–769. DOI: 10.1039/c2dt32151c.
  • Whitehorne, T. J. J.; Vabre, B.; Schaper, F. Lactide Polymerization Catalyzed by Mg and Zn Diketiminate Complexes with Flexible Ligand Frameworks. Dalton Trans 2014, 43, 6339–6352. DOI: 10.1039/c3dt53278j.
  • Yi, W.; Ma, H. Magnesium and Calcium Complexes Containing Biphenyl-Based Tridentate Iminophenolate Ligands for Ring-Opening Polymerization of Rac-Lactide. Inorg Chem 2013, 52, 11821–11835. DOI: 10.1021/ic4012668.
  • Wang, H.; Guo, J.; Yang, Y.; Ma, H. Diastereoselective Synthesis of Chiral Aminophenolate Magnesium Complexes and Their Application in the Stereoselective Polymerization of Rac-Lactide and Rac-β-Butyrolactone. Dalton Trans 2016, 45, 10942–10953. DOI: 10.1039/c6dt01126h.
  • Hu, J.; Kan, C.; Wang, H.; Ma, H. Highly Active Chiral Oxazolinyl Aminophenolate Magnesium Initiators for Isoselective Ring-Opening Polymerization of rac-Lactide: Dinuclearity Induced Enantiomorphic Site Control. Macromolecules 2018, 51, 5304–5312. DOI: 10.1021/acs.macromol.8b00924.
  • Deacy, A. C.; Durr, C. B.; Williams, C. K. Heterodinuclear Complexes Featuring Zn(ii) and M = Al(Iii), Ga(Iii) or In(Iii) for Cyclohexene Oxide and CO2 Copolymerisation. Dalton Trans 2020, 49, 223–231. DOI: 10.1039/C9DT02918D.
  • Deacy, A. C.; Kilpatrick, A. F. R.; Regoutz, A.; Williams, C. K. Understanding Metal Synergy in Heterodinuclear Catalysts for the Copolymerization of CO2 and Epoxides. Nat Chem 2020, 12, 372–380. DOI: 10.1038/s41557-020-0450-3.
  • Ghosh, S.; Wölper, C.; Tjaberings, A.; Gröschel, A. H.; Schulz, S. Syntheses, Structures and Catalytic Activity of Tetranuclear Mg Complexes in the ROP of Cyclic Esters under Industrially Relevant Conditions. Dalton Trans 2020, 49, 375–387. DOI: 10.1039/C9DT04359D.
  • Ghosh, S.; Spannenberg, A.; Mejía, E. Cubane-Type Polynuclear Zinc Complexes Containing Tridentate Schiff Base Ligands: Synthesis, Characterization, and Ring-Opening Polymerization Studies of rac -Lactide and ε -Caprolactone. Helv. Chim. Acta 2017, 100, e1700176. DOI: 10.1002/hlca.201700176.
  • Pankhurst, J. R.; Paul, S.; Zhu, Y.; Williams, C. K.; Love, J. B. Polynuclear Alkoxy-Zinc Complexes of Bowl-Shaped Macrocycles and Their Use in the Copolymerisation of Cyclohexene Oxide and CO2. Dalton Trans 2019, 48, 4887–4893. DOI: 10.1039/c9dt00595a.
  • Ghosh, S.; Glöckler, E.; Wölper, C.; Tjaberings, A.; Gröschel, A. H.; Schulz, S. Heteroleptic β-Ketoiminate Magnesium Catalysts for the Ring-Opening Polymerization of Lactide. Organometallics 2020, 39, 4221–4231. DOI: 10.1021/acs.organomet.0c00168.
  • Garden, J. A.; Saini, P. K.; Williams, C. K. Greater than the Sum of Its Parts: A Heterodinuclear Polymerization Catalyst. J Am Chem Soc 2015, 137, 15078–15081. DOI: 10.1021/jacs.5b09913.
  • Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. The Chemistry of Beta-Diketiminatometal Complexes. Chem Rev 2002, 102, 3031–3066. DOI: 10.1021/cr010424r.
  • Ghosh, S.; Schäfer, P. M.; Dittrich, D.; Scheiper, C.; Steiniger, P.; Fink, G.; Ksiazkiewicz, A. N.; Tjaberings, A.; Wölper, C.; Gröschel, A. H.; et al. Heterolepic β-Ketoiminate Zinc Phenoxide Complexes as Efficient Catalysts for the Ring Opening Polymerization of Lactide. ChemistryOpen 2019, 8, 951–960. DOI: 10.1002/open.201900203.
  • Chen, C.; Bellows, S. M.; Holland, P. L. Tuning Steric and Electronic Effects in Transition-Metal b-Diketiminate Complexes. Dalton Trans 2015, 44, 16654–16670. DOI: 10.1039/c5dt02215k.
  • Hohloch, S.; Kriegel, B. M.; Bergman, R. G.; Arnold, J. Group 5 Chemistry Supported by β-Diketiminate Ligands. Dalton Trans 2016, 45, 15725–15745. DOI: 10.1039/c6dt01770c.
  • Webster, R. L. β-Diektiminate Complexes of the First Row Transition Metals: application in Catalysis. Dalton Trans 2017, 46, 4483–4498. DOI: 10.1039/c7dt00319f.
  • Ganesamoorthy, C.; Krüger, J.; Glöckler, E.; Helling, C.; John, L.; Frank, W.; Wölper, C.; Schulz, S. Comprehensive Study on Reactions of Group 13 Diyls with Tetraorganodipentelanes. Inorg Chem 2018, 57, 9495–9503. DOI: 10.1021/acs.inorgchem.8b01489.
  • Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. Single-Site Catalysts for Ring-Opening Polymerization: Synthesis of Heterotactic Poly(Lactic Acid) from rac-Lactide. J. Am. Chem. Soc 1999, 121, 11583–11584. DOI: 10.1021/ja992678o.
  • Helling, C.; Schulz, S. Long-Lived Radicals of the Heavier Group 15 Elements Arsenic, Antimony, and Bismuth. Eur. J. Inorg. Chem 2020, 2020, 3209–3221. DOI: 10.1002/ejic.202000571.
  • Chisholm, M. H.; Huffman, J. C.; Phomphrai, K. Monomeric Metal Alkoxides and Trialkyl Siloxides: (BDI)Mg(OtBu)(THF ) and (BDI)Zn(OSiPh3)(THF ). Comments on Single Site Catalysts for Ring-Opening Polymerization of Lactides. J. Chem. Soc., Dalton Trans 2001, 222–224. DOI: 10.1039/b008158m.
  • Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Williams, D. J. A Well Defined Tin(ii) Initiator for the Living Polymerisation of Lactide. Chem. Commun 2001, 283–284. DOI: 10.1039/b008770j.
  • Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Coordination Chemistry and Reactivity of Monomeric Alkoxides and Amides of Magnesium and Zinc Supported by the Diiminato Ligand CH(CMeNC(6)H(3)-2,6-(i)Pr(2))(2). A Comparative Study. Inorg Chem 2002, 41, 2785–2794. DOI: 10.1021/ic020148e.
  • Dove, A. P.; Gibson, V. C.; Marshall, E. L.; White, A. J. P.; Williams, D. J. Magnesium and Zinc Complexes of a Potentially Tridentate Beta-Diketiminate Ligand. Dalton Trans. 2004, 570–578. DOI: 10.1039/B314760F.
  • Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Comparative Study of the Coordination Chemistry and Lactide Polymerization of Alkoxide and Amide Complexes of Zinc and Magnesium with a Beta-Diiminato Ligand Bearing Ether Substituents. Inorg Chem 2005, 44, 8004–8010. DOI: 10.1021/ic048363d.
  • Drouin, F.; Oguadinma, P. O.; Whitehorne, T. J. J.; Prud’homme, R. E.; Schaper, F. Lactide Polymerization with Chiral β-Diketiminate Zinc Complexes. Organometallics 2010, 29, 2139–2147. DOI: 10.1021/om100154w.
  • Drouin, F.; Whitehorne, T. J. J.; Schaper, F. Nacnac(Bn)MgOtBu: A Diketiminate-Based Catalyst for the Polymerisation of Rac-Lactide with Slight Isotactic Preference. Dalton Trans 2011, 40, 1396–1400. DOI: 10.1039/c0dt01294g.
  • Whitehorne, T. J. J.; Schaper, F. Nacnac(Bn)CuOiPr: A Strained Geometry Resulting in Very High Lactide Polymerization Activity. Chem Commun (Camb) 2012, 48, 10334–10336. DOI: 10.1039/c2cc34247b.
  • Whitehorne, T. J. J.; Schaper, F. Square-Planar Cu(II) Diketiminate Complexes in Lactide Polymerization. Inorg Chem 2013, 52, 13612–13622. DOI: 10.1021/ic402133c.
  • Keram, M.; Ma, H. Ring-Opening Polymerization of Lactide, ε-Caprolactone and Their Copolymerization Catalyzed by β-Diketiminate Zinc Complexes. Appl Organometal Chem 2017, 31, e3893. DOI: 10.1002/aoc.3893.
  • Dove, A. P.; Gibson, V. C.; Marshall, E. L.; Rzepa, H. S.; White, A. J. P.; Williams, D. J. Synthetic, Structural, Mechanistic, and Computational Studies on Single-Site Beta-Diketiminate Tin(II) Initiators for the Polymerization of Rac-Lactide. J Am Chem Soc 2006, 128, 9834–9843. DOI: 10.1021/ja061400a.
  • Sun, S.; Nie, K.; Tan, Y.; Zhao, B.; Zhang, Y.; Shen, Q.; Yao, Y. Bimetallic Lanthanide Amido Complexes as Highly Active Initiators for the Ring-Opening Polymerization of Lactides. Dalton Trans 2013, 42, 2870–2878. DOI: 10.1039/c2dt31597a.
  • Scheiper, C.; Wölper, C.; Bläser, D.; Roll, J.; Schulz, S. Syntheses, Solid-State Structures and Catalytic Activity of Zinc Carboxylate Complexes in Lactide Polymerization. Z. Naturforsch. B 2014, 69, 1365–1374. DOI: 10.5560/znb.2014-4133.
  • Tang, H.-Y.; Chen, H.-Y.; Huang, J.-H.; Lin, C.-C. Synthesis and Structural Characterization of Magnesium Ketiminate Complexes: Efficient Initiators for the Ring-Opening Polymerization of L-Lactide. Macromolecules 2007, 40, 8855–8860. DOI: 10.1021/ma071540k.
  • Peng, H.; Zhang, Z.; Qi, R.; Yao, Y.; Zhang, Y.; Shen, Q.; Cheng, Y. Synthesis, Reactivity, and Characterization of Sodium and Rare-Earth Metal Complexes Bearing a Dianionic N-Aryloxo-Functionalized Beta-Ketoiminate Ligand. Inorg Chem 2008, 47, 9828–9835. DOI: 10.1021/ic8011469.
  • Xu, B.; Han, X.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and Structural Characterization of Lanthanide Amides Stabilized by an N-Aryloxo Functionalized β-Ketoiminate Ligand. Chin. J. Chem 2010, 28, 1013–1018. DOI: 10.1002/cjoc.201090159.
  • Gu, X.-Y.; Han, X.-Z.; Yao, Y.-M.; Zhang, Y.; Shen, Q. Synthesis and Characterization of Lanthanide Complexes Bearing a Ferrocene-Containing N-Aryloxo-β-Ketoiminate Ligand. J. Organomet. Chem 2010, 695, 2726–2731. DOI: 10.1016/j.jorganchem.2010.07.037.
  • Xia, Q.; Cui, Y.; Yuan, D.; Wang, Y.; Yao, Y. Synthesis and Characterization of Lanthanide Complexes Stabilized by N-Aryl Substituted β-Ketoiminato Ligands and Their Application in the Polymerization of Rac-Lactide. J. Organomet. Chem 2017, 846, 161–168. DOI: 10.1016/j.jorganchem.2017.06.002.
  • Liu, Z.; Chen, H.-X.; Huang, D.; Zhang, Y.; Yao, Y.-M. A Facile Route to Lithium Complexes Supported by β-Ketoiminate Ligands and Their Reactivity. J. Organomet. Chem 2014, 749, 7–12. DOI: 10.1016/j.jorganchem.2013.09.027.
  • Slattery, R. M.; Stahl, A. E.; Brereton, K. R.; Rheingold, A. L.; Green, D. B.; Fritsch, J. M. Ring Opening Polymerization and Copolymerization of L‐Lactide and ɛ‐Caprolactone by Bis‐Ligated Magnesium Complexes. J. Polym. Sci. Part A: Polym. Chem 2019, 57, 48–59. DOI: 10.1002/pola.29280.
  • Ho, S.-M.; Hsiao, C.-S.; Datta, A.; Hung, C.-H.; Chang, L.-C.; Lee, T.-Y.; Huang, J.-H. Monomeric, Dimeric, and Trimeric Calcium Compounds Containing Substituted Pyrrolyl and Ketiminate Ligands: synthesis and Structural Characterization. Inorg Chem 2009, 48, 8004–8011. DOI: 10.1021/ic900265c.
  • Chuang, W.-J.; Huang, Y.-T.; Chen, Y.-H.; Lin, Y.-S.; Lu, W.-Y.; Lai, Y.-C.; Chiang, M. Y.; Hsu, S. C. N.; Chen, H.-Y. Synthesis, Characterization, and Catalytic Activity of Sodium Ketminiate Complexes toward the Ring-Opening Polymerization of l -Lactide. RSC Adv 2016, 6, 33014–33021. DOI: 10.1039/C6RA00373G.
  • Rezayee, N. M.; Gerling, K. A.; Rheingold, A. L.; Fritsch, J. M. Synthesis and Structures of Tridentate Ketoiminate Zinc Complexes Bearing Trifluoromethyl Substituents That Act as L-Lactide Ring Opening Polymerization Initiators. Dalton Trans 2013, 42, 5573–5586. DOI: 10.1039/c3dt32314e.
  • Gerling, K. A.; Rezayee, N. M.; Rheingold, A. L.; Green, D. B.; Fritsch, J. M. Synthesis and Structures of Bis-Ligated Zinc Complexes Supported by Tridentate Ketoimines That Initiate L-Lactide Polymerization. Dalton Trans 2014, 43, 16498–16508. DOI: 10.1039/c4dt01607f.
  • Liu, B.; Li, H.; Ha, C.-S.; Kim, I.; Yan, W. Ring-Opening Polymerization of ε-Caprolactone and Cyclohexene Oxide Initiated by Aluminum β-Ketoamino Complexes: steric and Electronic Effect of 3-Position Substituents of the Ligands. Macromol. Res 2008, 16, 441–445. DOI: 10.1007/BF03218543.
  • Liu, Y.; Dong, W.-S.; Liu, J.-Y.; Li, Y.-S. Living Ring-Opening Homo- and Copolymerisation of ε-Caprolactone and L-Lactide by Cyclic β-Ketiminato Aluminum Complexes. Dalton Trans 2014, 43, 2244–2251. DOI: 10.1039/c3dt52712c.
  • Huang, H.-C.; Wang, B.; Zhang, Y.-P.; Li, Y.-S. Bimetallic Aluminum Complexes with Cyclic β-Ketiminato Ligands: The Cooperative Effect Improves Their Capability in Polymerization of Lactide and ε-Caprolactone. Polym. Chem 2016, 7, 5819–5827. DOI: 10.1039/C6PY01092J.
  • Huang, H.-C.; Li, Z.-J.; Wang, B.; Chen, X.; Li, Y.-S. Synthesis of Lactide/ ɛ -Caprolactone Quasi-Random Copolymer by Using Rationally Designed Mononuclear Aluminum Complexes with Modified β-Ketiminato Ligand. J. Polym. Sci. Part A: Polym. Chem 2018, 56, 203–212. DOI: 10.1002/pola.28886.
  • Huang, H. ‐C.; Wang, B.; Chen, X. ‐L.; Pan, L.; Li, Y. ‐S. Ring‐Opening Polymerization of (Macro)Lactones by Highly Active Mononuclear Salen–Aluminum Complexes Bearing Cyclic β ‐Ketoiminato Ligand. J. Polym. Sci. Part A: Polym. Chem 2019, 57, 973–981. DOI: 10.1002/pola.29350.
  • Schmitz, L. A.; McCollum, A. M.; Rheingold, A. L.; Green, D. B.; Fritsch, J. M. Synthesis and Structures of Aluminum Ion-Pair Complexes That Act as L- and Racemic-Lactide Ring Opening Polymerization Initiators. Polyhedron 2018, 147, 94–105. DOI: 10.1016/j.poly.2018.03.011.
  • Chen, Y.-H.; Chen, Y.-J.; Tseng, H.-C.; Lian, C.-J.; Tsai, H.-Y.; Lai, Y.-C.; Hsu, S. C. N.; Chiang, M. Y.; Chen, H.-Y. Comparing l-Lactide and ε-Caprolactone Polymerization by Using Aluminum Complexes Bearing Ketiminate Ligands: steric, Electronic, and Chelating Effects. RSC Adv 2015, 5, 100272–100280. DOI: 10.1039/C5RA15530D.
  • Huang, Y.; Hung, W.-C.; Liao, M.-Y.; Tsai, T.-E.; Peng, Y.-L.; Lin, C.-C. Ring-Opening Polymerization of Lactides Initiated by Magnesium and Zinc Complexes Based on NNO-Tridentate Ketiminate Ligands: Activity and Stereoselectivity Studies. J. Polym. Sci. A Polym. Chem 2009, 47, 2318–2329. DOI: 10.1002/pola.23314.
  • Chuang, H.-J.; Chen, H.-L.; Huang, B.-H.; Tsai, T.-E.; Huang, P.-L.; Liao, T.-T.; Lin, C.-C. Efficient Zinc Initiators Supported by NNO-Tridentate Ketiminate Ligands for Cyclic Esters Polymerization. J. Polym. Sci. A Polym. Chem 2013, 51, 1185–1196. DOI: 10.1002/pola.26486.
  • Chuang, H.-J.; Chen, H.-L.; Ye, J.-L.; Chen, Z.-Y.; Huang, P.-L.; Liao, T.-T.; Tsai, T.-E.; Lin, C.-C. Ring-Opening Polymerization of Lactides Catalyzed by Magnesium Complexes Coordinated with NNO-Tridentate Pyrazolonate Ligands. J. Polym. Sci. A Polym. Chem 2013, 51, 696–707. DOI: 10.1002/pola.26426.
  • Chen, H.-L.; Chuang, H.-J.; Huang, B.-H.; Lin, C.-C. Ring-Opening Polymerization of ε-Caprolactone, β-Butyrolactone and Lactides by β-Ketiminate Pyrazolonate Zinc Complexes: Preparation and Characterization. Inorg. Chem. Commun 2013, 35, 247–251. DOI: 10.1016/j.inoche.2013.06.048.
  • Hsiao, M.-W.; Lin, C.-C. Ring-Opening Polymerization of L-Lactide Catalyzed by Calcium Complexes. Dalton Trans 2013, 42, 2041–2051. DOI: 10.1039/c2dt32487c.
  • Chuang, H.-J.; Su, Y.-C.; Ko, B.-T.; Lin, C.-C. Synthesis and Structural Characterization of Aluminum Complexes Supported by NNO-Tridentate Ketiminate Ligands: Efficient Catalysts for Ring-Opening Polymerization of l-Lactide. Inorg. Chem. Commun 2012, 18, 38–42. DOI: 10.1016/j.inoche.2012.01.004.
  • Huang, Y.; Kou, X.; Duan, Y.-L.; Ding, F.-F.; Yin, Y.-F.; Wang, W.; Yang, Y. Magnesium and Zinc Complexes Bearing NNO-Tridentate Ketiminate Ligands: synthesis, Structures and Catalysis in the Ring-Opening Polymerization of Lactides. Dalton Trans 2018, 47, 8121–8133. DOI: 10.1039/c8dt00888d.
  • Chandra, R. Biodegradable Polymers. Prog. Polym. Sci 1998, 23, 1273–1335. DOI: 10.1016/S0079-6700(97)00039-7.
  • Okada, M. Chemical Syntheses of Biodegradable Polymers. Prog. Polym. Sci. 2002, 27, 87–133. DOI: 10.1016/S0079-6700(01)00039-9.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, C.; Jérôme, R.; Lecomte, P. Ring-Opening Polymerization of α-Chloro-ε-Caprolactone and Chemical Modification of Poly(α-Chloro-ε-Caprolactone) by Atom Transfer Radical Processes. Macromolecules 2004, 37, 4055–4061. DOI: 10.1021/ma035003l.
  • Albertsson, A.-C.; Varma, I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4, 1466–1486. DOI: 10.1021/bm034247a.
  • Sudesh, K.; Abe, H.; Doi, Y. Synthesis, Structure and Properties of Polyhydroxyalkanoates: biological Polyesters. Prog. Polym. Scie 2000, 25, 1503–1555. DOI: 10.1016/S0079-6700(00)00035-6.
  • Gong, S.; Ma, H. beta-Diketiminate Aluminum Complexes: synthesis, Characterization and Ring-Opening Polymerization of Cyclic Esters. Dalton Trans 2008, 3345–3357. DOI: 10.1039/b802638f.
  • Ma, X.; Yao, M.; Zhong, M.; Deng, Z.; Li, W.; Yang, Z.; Roesky, H. W. Synthesis and Characterization of β -Diketiminate Aluminum Compounds and Their Use in the Ring-Opening Polymerization of ε-Caprolactone. Z. Anorg. Allg. Chem 2017, 643, 198–202. DOI: 10.1002/zaac.201600396.
  • Di, L.; Peng, Y.; Geng, C.; Liu, K.; Kong, D. Well-Controlled Ring-Opening Polymerization of Cyclic Esters Initiated by Dialkylaluminum β-Diketiminates. Dalton Trans 2013, 42, 11295–11303. DOI: 10.1039/c3dt50372k.
  • Kong, D.; Peng, Y.; Di, L.; Li, Y.; Chen, P.; Qu, J. Dimethylaluminum Complexes Bearing a Chiral Diketiminate Ligand: Synthesis, Characterization and Ring-Opening Polymerization of ε-Caprolactone. Inorg. Chem. Commun 2012, 22, 158–161. DOI: 10.1016/j.inoche.2012.05.050.
  • Gong, S.; Du, P.; Ma, H. Binuclear Aluminum Complexes Supported by Linked Bis(β-Diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters. Chin J Polym Sci 2018, 36, 190–201. DOI: 10.1007/s10118-018-2053-7.
  • Lu, N.; Jiang, Z.; Pei, H.; Liu, W.; Li, Y.; Dong, Y. Ring-Opening Polymerization of ε-Caprolactone Initiated by Aluminum Complexes Based on Pyridine-Substituted Asymmetric β-Diketiminate Ligands. Eur. J. Inorg. Chem 2017, 20172017, 1320–1327. DOI: 10.1002/ejic.201601375.
  • Xue, M.; Yao, Y.; Shen, Q.; Zhang, Y. The Salt-Free Diamido Complexes of Lanthanide Supported by β-Diketiminate: Synthesis, Characterization, and Their Catalytic Activity for the Polymerization of Acrylonitrile and ε-Caprolactone. J. Organomet. Chem 2005, 690, 4685–4691. DOI: 10.1016/j.jorganchem.2005.07.050.
  • Yao, Y.; Zhang, Z.; Peng, H.; Zhang, Y.; Shen, Q.; Lin, J. Synthesis and Structural Characterization of Beta-Diketiminate-Lanthanide Amides and Their Catalytic Activity for the Polymerization of Methyl Methacrylate and Epsilon-Caprolactone. Inorg Chem 2006, 45, 2175–2183. DOI: 10.1021/ic051158t.
  • Xue, M.; Jiao, R.; Zhang, Y.; Yao, Y.; Shen, Q. Syntheses and Structures of Tris-β-Diketiminate Lanthanide Complexes and Their High Activity for Ring-Opening Polymerization of ϵ-Caprolactone and L-Lactide. Eur. J. Inorg. Chem 2009, 2009, 4110–4118. DOI: 10.1002/ejic.200900313.
  • Chen, H.; Liu, P.; Yao, H.; Zhang, Y.; Yao, Y.; Shen, Q. Controlled Synthesis of Mononuclear or Binuclear Aryloxo Ytterbium Complexes Supported by Beta-Diketiminate Ligand and Their Activity for Polymerization of Epsilon-Caprolactone and L-Lactide. Dalton Trans 2010, 39, 6877–6885. DOI: 10.1039/c002385j.
  • Shen, X.; Xue, M.; Jiao, R.; Ma, Y.; Zhang, Y.; Shen, Q. Bis(β-Diketiminate) Rare-Earth-Metal Borohydrides: Syntheses, Structures, and Catalysis for the Polymerizations of l-Lactide, ε-Caprolactone, and Methyl Methacrylate. Organometallics 2012, 31, 6222–6230. DOI: 10.1021/om3005299.
  • Schmid, M.; Guillaume, S. M.; Roesky, P. W. β-Diketiminate Rare Earth Borohydride Complexes: Synthesis, Structure, and Catalytic Activity in the Ring-Opening Polymerization of ε-Caprolactone and Trimethylene Carbonate. Organometallics 2014, 33, 5392–5401. DOI: 10.1021/om500708x.
  • Whitehorne, T. J.; Schaper, F. Lactide, β-Butyrolactone, δ-Valerolactone, and ε-Caprolactone Polymerization with Copper Diketiminate Complexes. Can. J. Chem 2014, 92, 206–214. DOI: 10.1139/cjc-2013-0392.
  • Altaf, C. T.; Wang, H.; Keram, M.; Yang, Y.; Ma, H. Aluminum Methyl and Isopropoxide Complexes with Ketiminate Ligands: Synthesis, Structural Characterization and Ring-Opening Polymerization of Cyclic Esters. Polyhedron 2014, 81, 11–20. DOI: 10.1016/j.poly.2014.05.055.
  • Tseng, H.-C.; Chiang, M. Y.; Lu, W.-Y.; Chen, Y.-J.; Lian, C.-J.; Chen, Y.-H.; Tsai, H.-Y.; Lai, Y.-C.; Chen, H.-Y. A Closer Look at ε-Caprolactone Polymerization Catalyzed by Alkyl Aluminum Complexes: The Effect of Induction Period on Overall Catalytic Activity. Dalton Trans 2015, 44, 11763–11773. DOI: 10.1039/c5dt01563d.
  • Yu, R.-C.; Hung, C.-H.; Huang, J.-H.; Lee, H.-Y.; Chen, J.-T. Four- and Five-Coordinate Aluminum Ketiminate Complexes: synthesis, Characterization, and Ring-Opening Polymerization. Inorg Chem 2002, 41, 6450–6455. DOI: 10.1021/ic025785j.
  • Lee, W.-Y.; Hsieh, H.-H.; Hsieh, C.-C.; Lee, H. M.; Lee, G.-H.; Huang, J.-H.; Wu, T.-C.; Chuang, S.-H. Four- and Five-Coordinate Magnesium Compounds Containing Ketiminate Ligands. Synthesis and Characterization of L2Mg, L2Mg(LH), and L2Mg(Py), Where L = MeC(O)CHC(NAr)Me. J. Organomet. Chem 2007, 692, 1131–1137. DOI: 10.1016/j.jorganchem.2006.11.015.
  • Raghavendra, B.; Bakthavachalam, K.; Ramakrishna, B.; Dastagiri Reddy, N. N -Benzoylbenzamidinate Complexes of Magnesium: Catalysts for the Ring-Opening Polymerization of ε-Caprolactone and CO2/Epoxide Coupling. Organometallics 2017, 36, 4005–4012. DOI: 10.1021/acs.organomet.7b00617.
  • Huang, L.-L.; Han, X.-Z.; Yao, Y.-M.; Zhang, Y.; Shen, Q. Synthesis of Ferrocene-Containing N-Aryloxo β-Ketoiminate Lanthanide Complexes and Polymerization of ε-Caprolactone. Appl. Organometal. Chem 2011, 25, 464–469. DOI: 10.1002/aoc.1788.
  • Han, X.; Wu, L.; Yao, Y.; Zhang, Y.; Shen, Q. Synthesis and Characterization of N-Aryloxo-Functionalized β-Ketoiminate Rare-Earth Complexes and Their Catalytic Activity for the Polymerization of ɛ-Caprolactone. Chin. Sci. Bull 2009, 54, 3795–3800. DOI: 10.1007/s11434-009-0514-7.
  • Raghavendra, B.; Shashank, P. V. S.; Pandey, M. K.; Reddy, N. D. CO2/Epoxide Coupling and the ROP of ε-Caprolactone: Mg and Al Complexes of γ-Phosphino-Ketiminates as Dual-Purpose Catalysts. Organometallics 2018, 37, 1656–1664. DOI: 10.1021/acs.organomet.8b00017.
  • Bakthavachalam, K.; Rajagopal, A.; Dastagiri Reddy, N. N-Benzoylbenzamidinate Complexes of Aluminum: highly Efficient Initiators for the Ring-Opening Polymerization of ε-Caprolactone. Dalton Trans 2014, 43, 14816–14823. DOI: 10.1039/c4dt02026j.
  • Cheng, M.; Moore, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. Single-Site Beta-Diiminate Zinc Catalysts for the Alternating Copolymerization of CO2 and Epoxides: catalyst Synthesis and Unprecedented Polymerization Activity. J Am Chem Soc 2001, 123, 8738–8749. DOI: 10.1021/ja003850n.
  • Kröger, M.; Folli, C.; Walter, O.; Döring, M. Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide and Their Terpolymerization with Lactide Catalyzed by Zinc Complexes of N,N Ligands. Adv. Synth. Catal 2006, 348, 1908–1918. DOI: 10.1002/adsc.200606075.
  • Moore, D. R.; Cheng, M.; Lobkovsky, E. B.; Coates, G. W. Mechanism of the Alternating Copolymerization of Epoxides and CO2 Using Beta-Diiminate Zinc Catalysts: evidence for a Bimetallic Epoxide Enchainment. J Am Chem Soc 2003, 125, 11911–11924. DOI: 10.1021/ja030085e.
  • Jeske, R. C.; DiCiccio, A. M.; Coates, G. W. Alternating Copolymerization of Epoxides and Cyclic Anhydrides: an Improved Route to Aliphatic Polyesters. J Am Chem Soc 2007, 129, 11330–11331. DOI: 10.1021/ja0737568.
  • Nishioka, K.; Goto, H.; Sugimoto, H. Dual Catalyst System for Asymmetric Alternating Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Chiral Aluminum Complexes: Lewis Base as Catalyst Activator and Lewis Acid as Monomer Activator. Macromolecules 2012, 45, 8172–8192. DOI: 10.1021/ma301696d.
  • van Meerendonk, W. J.; Duchateau, R.; Koning, C. E.; Gruter, G.-J. M. High-Throughput Automated Parallel Evaluation of Zinc-Based Catalysts for the Copolymerization of CHO and CO2 to Polycarbonates. Macromol. Rapid Commun 2004, 25, 382–386. DOI: 10.1002/marc.200300255.
  • Pilz, M. F.; Limberg, C.; Lazarov, B. B.; Hultzsch, K. C.; Ziemer, B. Dinuclear Zinc Complexes Based on Parallel β-Diiminato Binding Sites: Syntheses, Structures, and Properties as CO2 /Epoxide Copolymerization Catalysts. Organometallics 2007, 26, 3668–3676. DOI: 10.1021/om070221e.
  • Rajendran, N. M.; Haleel, A.; Reddy, N. D. Copolymerization of CO2 and Cyclohexene Oxide: β-Diketiminate-Supported Zn(II)OMe and Zn(II)Et Complexes as Initiators. Organometallics 2014, 33, 217–224. DOI: 10.1021/om400977c.
  • Piesik, D. F.-J.; Range, S.; Harder, S. Bimetallic Calcium and Zinc Complexes with Bridged β-Diketiminate Ligands: Investigations on Epoxide/CO2 Copolymerization. Organometallics 2008, 27, 6178–6187. DOI: 10.1021/om800597f.
  • Liu, B.; Tian, C.; Zhang, L.; Yan, W.; Zhang, W. Copolymerization of Carbon Dioxide and Cyclohexene Oxide with Zinc/β-Ketoiminato Complexes: Investigating the Influence of the Electron Structure of Zinc/β-Ketoiminato Complexes on the Catalytic Activity and Resultant Copolymer Properties. J. Polym. Sci. A Polym. Chem 2006, 44, 6243–6251. DOI: 10.1002/pola.21715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.