596
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Recent Progress on Controlled Polymerizations for Functional Metallopolymers

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 306-370 | Received 30 Oct 2022, Accepted 04 Mar 2023, Published online: 09 May 2023

References

  • Dong, Q. C.; Meng, Z. G.; Ho, C. L.; Guo, H. G.; Yang, W. Y.; Manners, I.; Xu, L. L.; Wong, W. Y. A Molecular Approach to Magnetic Metallic Nanostructures from Metallopolymer Precursors. Chem. Soc. Rev. 2018, 47, 4934–4953. DOI: 10.1039/c7cs00599g.
  • Wang, W. L.; Zhao, L. Y.; Lv, H.; Zhang, G. D.; Xia, C. G.; Hahn, F. E. F.; Li, W. Modular "Click" Preparation of Bifunctional Polymeric Heterometallic Catalysts. Angew. Chem. Int. Ed. Engl. 2016, 55, 7665–7670. DOI: 10.1002/anie.201600999.
  • Sha, Y.; Jia, H.; Shen, Z. H.; Luo, Z. Y. Synthetic Strategies, Properties, and Applications of Unsaturated Main-Chain Metallopolymers Prepared by Olefin Metathesis Polymerization. Polym. Rev. 2021, 61, 415–455. DOI: 10.1080/15583724.2020.1801727.
  • Yiu, S. C.; Nunns, A.; Ho, C. L.; Ngai, J. H. L.; Meng, Z. G.; Li, G. J.; Gwyther, J.; Whittell, G. R.; Manners, I.; Wong, W. Y. Nanostructured Bimetallic Block Copolymers as Precursors to Magnetic FePt Nanoparticles. Macromolecules 2019, 52, 3176–3186. DOI: 10.1021/acs.macromol.9b00088.
  • Liu, X.; Zhao, L.; Liu, F. F.; Astruc, D.; Gu, H. B. Supramolecular Redox-Responsive Ferrocene Hydrogels and Microgels. Coord. Chem. Rev. 2020, 419, 213406. DOI: 10.1016/j.ccr.2020.213406.
  • Rupar, P. A.; Cambridge, G.; Winnik, M. A.; Manners, I. Reversible Cross-Linking of Polyisoprene Coronas in Micelles, Block Comicelles, and Hierarchical Micelle Architectures Using Pt(0)-Olefin Coordination. J. Am. Chem. Soc. 2011, 133, 16947–16957. DOI: 10.1021/ja206370k.
  • Liu, X.; Rapakousiou, A.; Deraedt, C.; Ciganda, R.; Wang, Y. L.; Ruiz, J.; Gu, H. B.; Astruc, D. Multiple Applications of Polymers Containing Electron-Reservoir Metal-Sandwich Complexes. Chem. Commun. (Camb) 2020, 56, 11374–11385. DOI: 10.1039/d0cc04586a.
  • Goswami, S.; Hernandez, J. L.; Gish, M. K.; Wang, J. L.; Kim, B.; Laudari, A. P.; Guha, S.; Papanikolas, J. M.; Reynolds, J. R.; Schanze, K. S. Cyclometalated Platinum-Containing Diketopyrrolopyrrole Complexes and Polymers: Photophysics and Photovoltaic Applications. Chem. Mater. 2017, 29, 8449–8461. DOI: 10.1021/acs.chemmater.7b03018.
  • Lian, H.; Cheng, X. Z.; Hao, H. T.; Han, J. B.; Lau, M. T.; Li, Z. K.; Zhou, Z.; Dong, Q. C.; Wong, W. Y. Metal-Containing Organic Compounds for Memory and Data Storage Applications. Chem. Soc. Rev. 2022, 51, 1926–1982. DOI: 10.1039/d0cs00569j.
  • Nguyen, M. T.; Jones, R. A.; Holliday, B. J. Understanding the Effect of Metal Centers on Charge Transport and Delocalization in Conducting Metallopolymers. Macromolecules 2017, 50, 872–883. DOI: 10.1021/acs.macromol.6b02349.
  • Whittell, G. R.; Hager, M. D.; Schubert, U. S.; Manners, I. Functional Soft Materials from Metallopolymers and Metallosupramolecular Polymers. Nat. Mater. 2011, 10, 176–188. DOI: 10.1038/nmat2966.
  • Pan, X. C.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally Controlled Atom Transfer Radical Polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490. DOI: 10.1039/c8cs00259b.
  • Keddie, D. J. A Guide to the Synthesis of Block Copolymers Using Reversible-Addition Fragmentation Chain Transfer (RAFT) Polymerization. Chem. Soc. Rev. 2014, 43, 496–505. DOI: 10.1039/c3cs60290g.
  • Liu, X.; Liu, F. F.; Liu, W. T.; Gu, H. B. ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications. Polym. Rev. 2021, 61, 1–53. DOI: 10.1080/15583724.2020.1723022.
  • Liu, X.; Lin, W.; Astruc, D.; Gu, H. B. Syntheses and Applications of Dendronized Polymers. Prog. Polym. Sci. 2019, 96, 43–105. DOI: 10.1016/j.progpolymsci.2019.06.002.
  • Higashihara, T.; Hayashi, M.; Hirao, A. Synthesis of Well-Defined Star-Branched Polymers by Stepwise Iterative Methodology Using Living Anionic Polymerization. Prog. Polym. Sci. 2011, 36, 323–375. DOI: 10.1016/j.progpolymsci.2010.08.001.
  • Hardy, C. G.; Zhang, J. Y.; Yan, Y.; Ren, L. X.; Tang, C. B. Metallopolymers with Transition Metals in the Side-Chain by Living and Controlled Polymerization Techniques. Prog. Polym. Sci. 2014, 39, 1742–1796. DOI: 10.1016/j.progpolymsci.2014.03.002.
  • Yan, Y.; Zhang, J. Y.; Ren, L. X.; Tang, C. B. Metal-Containing and Related Polymers for Biomedical Applications. Chem. Soc. Rev. 2016, 45, 5232–5263. DOI: 10.1039/c6cs00026f.
  • Gotz, S.; Zechel, S.; Hager, M. D.; Newkome, G. R.; Schubert, U. S. Versatile Applications of Metallopolymers. Prog. Polym. Sci. 2021, 119, 101428. DOI: 10.1016/j.progpolymsci.2021.101428.
  • Zhao, L.; Liu, X.; Zhang, L.; Qiu, G. R.; Astruc, D.; Gu, H. B. Metallomacromolecules Containing Cobalt Sandwich Complexes: Synthesis and Functional Materials Properties. Coord. Chem. Rev. 2017, 337, 34–79. DOI: 10.1016/j.ccr.2017.02.009.
  • Nguyen, M. T.; Jones, R. A.; Holliday, B. J. Recent Advances in the Functional Applications of Conducting Metallopolymers. Coord. Chem. Rev. 2018, 377, 237–258. DOI: 10.1016/j.ccr.2018.08.004.
  • Wang, Y. L.; Astruc, D.; Abd-El-Aziz, A. S. Metallopolymers for Advanced Sustainable Applications. Chem. Soc. Rev. 2019, 48, 558–636. DOI: 10.1039/c7cs00656j.
  • Chmielarz, P.; Fantin, M.; Park, S.; Isse, A. A.; Gennaro, A.; Magenau, A. J. D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically Mediated Atom Transfer Radical Polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78. DOI: 10.1016/j.progpolymsci.2017.02.005.
  • Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. DOI: 10.1021/ma3001719.
  • di Lena, F.; Matyjaszewski, K. Transition Metal Catalysts for Controlled Radical Polymerization. Prog. Polym. Sci. 2010, 35, 959–1021. DOI: 10.1016/j.progpolymsci.2010.05.001.
  • Kealy, T. J.; Pauson, P. L. A New Type of Organo-Iron Compound. Nature 1951, 168, 1039–1040. DOI: 10.1038/1681039b0.
  • Wen, T.; Wang, Y. Y.; Yin, P. C.; Huang, M. J. Hybrid Hairy Platelets with Tunable Structures by Inclusion Crystallization of Polyferrocene-Containing Block Copolymers and Silicotungstic Acid. ACS Macro Lett. 2021, 10, 272–277. DOI: 10.1021/acsmacrolett.0c00835.
  • Zhang, B.; Fan, F.; Xue, W. H.; Liu, G.; Fu, Y. B.; Zhuang, X. D.; Xu, X. H.; Gu, J. W.; Li, R. W.; Chen, Y. Redox Gated Polymer Memristive Processing Memory Unit. Nat. Commun. 2019, 10, 736. DOI: 10.1038/s41467-019-08642-y.
  • Hardy, C. G.; Ren, L. X.; Ma, S. G.; Tang, C. B. Self-Assembly of Well-Defined Ferrocene Triblock Copolymers and Their Template Synthesis of Ordered Iron Oxide Nanoparticles. Chem. Commun. (Camb) 2013, 49, 4373–4375. DOI: 10.1039/c2cc36756d.
  • Ghimire, G.; Yi, Y.; Derylo, M. A.; Baker, L. A.; Ito, T. Electron Propagation within Redox-Active Microdomains in Thin Films of Ferrocene-Containing Diblock Copolymers. Langmuir 2015, 31, 12307–12314. DOI: 10.1021/acs.langmuir.5b02996.
  • Xu, F.; Li, H.; Luo, Y. L.; Tang, W. Redox-Responsive Self-Assembly Micelles from Poly(N-Acryloylmorpholine-Block-2-Acryloyloxyethyl Ferrocenecarboxylate) Amphiphilic Block Copolymers as Drug Release Carriers. ACS Appl. Mater. Interfaces 2017, 9, 5181–5192. DOI: 10.1021/acsami.6b16017.
  • Wei, X. P.; Zhang, R. Q.; Wang, L. B.; Luo, Y. L.; Xu, F.; Chen, Y. S. Novel Multi-Walled Carbon Nanotubes Decorated with Gold Nanoparticles with Poly(2-Methacryloyloxyethyl Ferrocenecarboxylate) Grafted on to Form Organic-Inorganic Nanohybrids: Preparation, Characterization, and Electrochemical Sensing Applications. J. Mater. Chem. C 2019, 7, 119–132. DOI: 10.1039/C8TC05294H.
  • Deng, Z.; Yu, H. J.; Wang, L.; Zhai, X. T.; Chen, Y. S.; Sun, R. L. Synthesis of Ferrocenyl Functionalized Hyperbranched Polyethylene and Its Application as Low Migration Burning Rate Catalyst. J. Organomet. Chem. 2015, 799–800, 273–280. DOI: 10.1016/j.jorganchem.2015.10.001.
  • Deng, Z.; Yu, H. J.; Wang, L.; Zhai, X. T.; Chen, Y. S.; Vatsadze, S. Z. Construction of Ferrocene-Containing Nanomaterials via Self-Assembly of Ferrocenyl Hyperbranched Polyethylene. J. Organomet. Chem. 2016, 821, 48–53. DOI: 10.1016/j.jorganchem.2016.03.016.
  • Gan, L.; Song, J.; Guo, S.; Jańczewski, D.; Nijhuis, C. A. Side Chain Effects in the Packing Structure and Stiffness of Redox-Responsive Ferrocene-Containing Polymer Brushes. Eur. Polym. J. 2016, 83, 517–528. DOI: 10.1016/j.eurpolymj.2016.05.017.
  • Gan, L.; Suchand Sangeeth, C. S.; Yuan, L.; Jańczewski, D.; Song, J.; Nijhuis, C. A. Tuning Charge Transport across Junctions of Ferrocene-Containing Polymer Brushes on ITO by Controlling the Brush Thickness and the Tether Lengths. Eur. Polym. J. 2017, 97, 282–291. DOI: 10.1016/j.eurpolymj.2017.10.009.
  • Qian, W. H.; Zhang, H. Y.; Song, T.; Ye, M.; Feng, C.; Lu, G. L.; Huang, X. Y. A New Ferrocene/Disulfide-Containing Methacrylate Monomer: Synthesis. ATRP and Nanocomposite. Eur. Polym. J. 2019, 119, 8–13. DOI: 10.1016/j.eurpolymj.2019.07.009.
  • Bui-Thi-Tuyet, V.; Trippe-Allard, G.; Ghilane, J.; Randriamahazaka, H. Surface and Electrochemical Properties of Polymer Brush-Based Redox Poly (Ionic Liquid). ACS Appl. Mater. Interfaces 2016, 8, 28316–28324. DOI: 10.1021/acsami.6b02107.
  • Rol, F.; Belgacem, M. N.; Gandini, A.; Bras, J. Recent Advances in Surface-Modified Cellulose Nanofibrils. Prog. Polym. Sci. 2019, 88, 241–264. DOI: 10.1016/j.progpolymsci.2018.09.002.
  • Li, P. P.; Kang, H. L.; Zhang, C.; Li, W. W.; Huang, Y.; Liu, R. G. Reversible Redox Activity of Ferrocene Functionalized Hydroxypropyl Cellulose and Its Application to Detect H2O2. Carbohydr. Polym. 2016, 140, 35–42. DOI: 10.1016/j.carbpol.2015.11.077.
  • Li, P. P.; Kang, H. L.; Che, N.; Liu, Z. J.; Zhang, C.; Cao, C.; Li, W. W.; Liu, R. G.; Huang, Y. Synthesis, Self-Assembly and Redox-Responsive Properties of Well-Defined Hydroxypropylcellulose-Graft-Poly(2-Acryloyloxyethyl Ferrocenecarboxylate) Copolymers. Polym. Int. 2015, 64, 1015–1022. DOI: 10.1002/pi.4879.
  • Rüttiger, C.; Mehlhase, S.; Vowinkel, S.; Cherkashinin, G.; Liu, N.; Dietz, C.; Stark, R. W.; Biesalski, M.; Gallei, M. Redox-Mediated Flux Control in Functional Paper. Polymer 2016, 98, 429–436. DOI: 10.1016/j.polymer.2016.01.065.
  • Albada, B.; Metzler-Nolte, N. Organometallic-Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications. Chem. Rev. 2016, 116, 11797–11839. DOI: 10.1021/acs.chemrev.6b00166.
  • Sheats, J. E.; Rausch, M. D. Synthesis and Properties of Cobalticinium Salts. I. Synthesis of Monosubstituted Cobalticinium Salts. J. Org. Chem. 1970, 35, 3245–3249. DOI: 10.1021/jo00835a014.
  • Chen, N. J.; Zhu, H.; Chu, Y. H.; Li, R.; Liu, Y.; Wang, F. H. Cobaltocenium-Containing Polybenzimidazole Polymers for Alkaline Anion Exchange Membrane Applications. Polym. Chem. 2017, 8, 1381–1392. DOI: 10.1039/C6PY01936F.
  • Pittman, C. U.; Ayers, O. E.; McManus, S. P.; Sheats, J. E.; Whitten, C. E. Organometallic Polymers. IX. Polyesters of 1,1'-Bis(Chlorocarbonyl)Cobalticinium Hexafluorophosphate. Macromolecules 1971, 4, 360–362. DOI: 10.1021/ma60021a025.
  • Ren, L. X.; Hardy, C. G.; Tang, C. B. Synthesis and Solution Self-Assembly of Side-Chain Cobaltocenium-Containing Block Copolymers. J. Am. Chem. Soc. 2010, 132, 8874–8875. DOI: 10.1021/ja1037726.
  • Ren, L. X.; Zhang, J. Y.; Hardy, C. G.; Doxie, D.; Fleming, B.; Tang, C. B. Preparation of Cobaltocenium-Labeled Polymers by Atom Transfer Radical Polymerization. Macromolecules 2012, 45, 2267–2275. DOI: 10.1021/ma202725c.
  • Chadha, P.; Ragogna, P. J. Side Chain Co(I) polymers Featuring Acrylate Functionalized Neutral 18 Electron CpCo(C4R4) (R = Ph, Me) Units. Chem. Commun. (Camb) 2011, 47, 5301–5303. DOI: 10.1039/c1cc11076d.
  • Ruttiger, C.; Pfeifer, V.; Rittscher, V.; Stock, D.; Scheid, D.; Vowinkel, S.; Roth, F.; Didzoleit, H.; Stuhn, B.; Elbert, J.; et al. One for All: Cobalt-Containing Polymethacrylates for Magnetic Ceramics, Block Copolymerization, Unexpected Electrochemistry, and Stimuli-Responsiveness. Polym. Chem. 2016, 7, 1129–1137. DOI: 10.1039/C5PY01845E.
  • von Irmer, J.; Vowinkel, S.; Scheid, D.; Schottner, S.; Ruttiger, C.; Appold, M.; Gallei, M. Surface-Initiated Atom Transfer Radical Polymerization of Electrochemically Responsive Cobalt-Methacrylates. Polymer 2017, 122, 303–311. DOI: 10.1016/j.polymer.2017.06.062.
  • Poynton, F. E.; Bright, S. A.; Blasco, S.; Williams, D. C.; Kelly, J. M.; Gunnlaugsson, T. The Development of Ruthenium(II) Polypyridyl Complexes and Conjugates for in Vitro Cellular and in Vivo Applications. Chem. Soc. Rev. 2017, 46, 7706–7756. DOI: 10.1039/c7cs00680b.
  • Soldevila-Barreda, J. J.; Metzler-Nolte, N. Intracellular Catalysis with Selected Metal Complexes and Metallic Nanoparticles: Advances toward the Development of Catalytic Metallodrugs. Chem. Rev. 2019, 119, 829–869. DOI: 10.1021/acs.chemrev.8b00493.
  • Villemin, E.; Ong, Y. C.; Thomas, C. M.; Gasser, G. Polymer Encapsulation of Ruthenium Complexes for Biological and Medicinal Applications. Nat. Rev. Chem. 2019, 3, 261–282. DOI: 10.1038/s41570-019-0088-0.
  • Heinemann, F.; Karges, J.; Gasser, G. Critical Overview of the Use of Ru(II) Polypyridyl Complexes as Photosensitizers in One-Photon and Two-Photon Photodynamic Therapy. Acc. Chem. Res. 2017, 50, 2727–2736. DOI: 10.1021/acs.accounts.7b00180.
  • Ge, X. Q.; Sun, L. N.; Ma, B. B.; Jin, D.; Dong, L.; Shi, L. Y.; Li, N.; Chen, H. G.; Huang, W. Simultaneous Realization of Hg2+ Sensing, Magnetic Resonance Imaging and Upconversion Luminescence in Vitro and in Vivo Bioimaging Based on Hollow Mesoporous Silica Coated UCNPs and Ruthenium Complex. Nanoscale 2015, 7, 13877–13887. DOI: 10.1039/c5nr04006j.
  • Wolf, W. J.; Lin, T. P.; Grubbs, R. H. Examining the Effects of Monomer and Catalyst Structure on the Mechanism of Ruthenium-Catalyzed Ring-Opening Metathesis Polymerization. J. Am. Chem. Soc. 2019, 141, 17796–17808. DOI: 10.1021/jacs.9b08835.
  • Yoshikawa, K.; Motoyama, D.; Hiruma, Y.; Ozawa, H.; Nagano, S.; Haga, M. A. Proton-Rocking-Chair-Type Redox Capacitors Based on Indium Tin Oxide Electrodes with Multilayer Films Containing Ru Complexes. ACS Appl. Mater. Interfaces 2018, 10, 26990–27000. DOI: 10.1021/acsami.8b05907.
  • Aamer, K. A.; Tew, G. N. Supramolecular Polymers Containing Terpyridine-Metal Complexes in the Side Chain. Macromolecules 2007, 40, 2737–2744. DOI: 10.1021/ma062765i.
  • Aamer, K. A.; De Jeu, W. H.; Tew, G. N. Diblock Copolymers Containing Metal Complexes in the Side Chain of One Block. Macromolecules 2008, 41, 2022–2029. DOI: 10.1021/ma071531b.
  • Gopinath, J.; Balasubramanyam, R. K. C.; Santosh, V.; Swami, S. K.; Kumar, D. K.; Gupta, S. K.; Dutta, V.; Reddy, K. R.; Sadhu, V.; Sainath, A. V. S.; Aminabhavi, T. M. Novel Anisotropic Ordered Polymeric Materials Based on Metallopolymer Precursors as Dye Sensitized Solar Cells. Chem. Eng. J. 2019, 358, 1166–1175. DOI: 10.1016/j.cej.2018.10.090.
  • Yan, Y.; Zhang, J. Y.; Qiao, Y. L.; Ganewatta, M.; Tang, C. B. Ruthenocene-Containing Homopolymers and Block Copolymers via ATRP and RAFT Polymerization. Macromolecules 2013, 46, 8816–8823. DOI: 10.1021/ma402039u.
  • Brezinski, W. P.; Karayilan, M.; Clary, K. E.; Pavlopoulos, N. G.; Li, S.; Fu, L. Y.; Matyjaszewski, K.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L.; Pyun, J. [FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water. Angew. Chem. Int. Ed. Engl. 2018, 57, 11898–11902. DOI: 10.1002/anie.201804661.
  • Brezinski, W. P.; Karayilan, M.; Clary, K. E.; McCleary-Petersen, K. C.; Fu, L. Y.; Matyjaszewski, K.; Evans, D. H.; Lichtenberger, D. L.; Glass, R. S.; Pyun, J. Macromolecular Engineering of the Outer Coordination Sphere of [2Fe-2S] Metallopolymers to Enhance Catalytic Activity for H-2 Production. ACS Macro Lett. 2018, 7, 1383–1387. DOI: 10.1021/acsmacrolett.8b00765.
  • Karayilan, M.; McCleary-Petersen, K. C.; Hamilton, M. O.; Fu, L. Y.; Matyjaszewski, K.; Glass, R. S.; Lichtenberger, D. L.; Pyun, J. Synthesis of Metallopolymers via Atom Transfer Radical Polymerization from a [2Fe-2S] Metalloinitiator: Molecular Weight Effects on Electrocatalytic Hydrogen Production. Macromol. Rapid Commun. 2020, 41, 1900424. DOI: 10.1002/marc.201900424.
  • Christopherson, C. J.; Hackett, Z. S.; Sauve, E. R.; Paisley, N. R.; Tonge, C. M.; Mayder, D. M.; Hudson, Z. M. Synthesis of Phosphorescent Iridium-Containing Acrylic Monomers and Their Room-Temperature Polymerization by Cu(0)-RDRP. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 2539–2546. DOI: 10.1002/pola.29233.
  • Jones, G. R.; Anastasaki, A.; Whitfield, R.; Engelis, N.; Liarou, E.; Haddleton, D. M. Copper-Mediated Reversible Deactivation Radical Polymerization in Aqueous Media. Angew. Chem. Int. Ed. Engl. 2018, 57, 10468–10482. DOI: 10.1002/anie.201802091.
  • Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016, 52, 1–18. DOI: 10.1016/j.progpolymsci.2015.10.002.
  • Zhang, W. J.; Hu, X. L.; Shen, Q.; Xing, D. Mitochondria-Specific Drug Release and Reactive Oxygen Species Burst Induced by Polyprodrug Nanoreactors Can Enhance Chemotherapy. Nat. Commun. 2019, 10, 1704. DOI: 10.1038/s41467-019-09566-3.
  • Shi, M.; Li, A. L.; Liang, H.; Lu, J. Reversible Addition-Fragmentation Transfer Polymerization of a Novel Monomer Containing Both Aldehyde and Ferrocene Functional Groups. Macromolecules 2007, 40, 1891–1896. DOI: 10.1021/ma062577s.
  • Xiao, Z. P.; Cai, Z. H.; Liang, H.; Lu, J. A. Amphiphilic Block Copolymers with Aldehyde and Ferrocene-Functionalized Hydrophobic Block and Their Redox-Responsive Micelles. J. Mater. Chem. 2010, 20, 8375–8381. DOI: 10.1039/c0jm01453b.
  • Zhou, N. C.; Zhang, Z. B.; Zhu, J.; Cheng, Z. P.; Zhu, X. L. RAFT Polymerization of Styrene Mediated by Ferrocenyl-Containing RAFT Agent and Properties of the Polymer Derived from Ferrocene. Macromolecules 2009, 42, 3898–3905. DOI: 10.1021/ma8027276.
  • Du, P.; Liu, J. H.; Chen, G. S.; Jiang, M. Dual Responsive Supramolecular Hydrogel with Electrochemical Activity. Langmuir 2011, 27, 9602–9608. DOI: 10.1021/la201843z.
  • Schmidt, B. V. K. J.; Kugele, D.; Irmer, J. v.; Steinkoenig, J.; Mutlu, H.; Ruttiger, C.; Hawker, C. J.; Gallei, M.; Barner-Kowollik, C. Dual-Gated Supramolecular Star Polymers in Aqueous Solution. Macromolecules 2017, 50, 2375–2386. DOI: 10.1021/acs.macromol.7b00165.
  • Zuo, C.; Dai, X. Y.; Zhao, S. J.; Liu, X. N.; Ding, S. L.; Ma, L. W.; Liu, M. Z.; Wei, H. Fabrication of Dual-Redox Responsive Supramolecular Copolymers Using a Reducible beta-Cyclodextran-Ferrocene Double-Head Unit. ACS Macro Lett. 2016, 5, 873–878. DOI: 10.1021/acsmacrolett.6b00450.
  • Schmidt, B. K. J.; Elbert, J.; Barner-Kowollik, C.; Gallei, M. Individually Addressable Thermo- and RedoxResponsive Block Copolymers by Combining Anionic Polymerization and RAFT Protocols. Macromol. Rapid Commun. 2014, 35, 708–714. DOI: 10.1002/marc.201300870.
  • Szillat, F.; Schmidt, B. V. K. J.; Hubert, A.; Barner-Kowollik, C.; Ritter, H. Redox-Switchable Supramolecular Graft Polymer Formation via Ferrocene-Cyclodextrin Assembly. Macromol. Rapid Commun. 2014, 35, 1293–1300. DOI: 10.1002/marc.201400122.
  • Shi, P. F.; Qu, Y. Q.; Liu, C. G.; Khan, H.; Sun, P. C.; Zhang, W. Q. Redox-Responsive Multicompartment Vesicles of Ferrocene-Containing Triblock Terpolymer Exhibiting On Off Switchable Pores. ACS Macro Lett. 2016, 5, 88–93. DOI: 10.1021/acsmacrolett.5b00928.
  • Gao, C. Q.; Liu, C. G.; Zhou, H.; Wang, S.; Zhang, W. Q. In Situ Synthesis of Nano-Assemblies of the High Molecular Weight Ferrocene-Containing Block Copolymer via Dispersion RAFT Polymerization. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 900–909. DOI: 10.1002/pola.27947.
  • Edzang, R. W. N.; Lejars, M.; Brisset, H.; Raimundo, J. M.; Bressy, C. RAFT-Synthesized Polymers Based on New Ferrocenyl Methacrylates and Electrochemical Properties. RSC Adv. 2015, 5, 77019–77026. DOI: 10.1039/C5RA15310G.
  • Jiang, X.; Li, R. R.; Feng, C.; Lu, G. L.; Huang, X. Y. Triple-Stimuli-Responsive Ferrocene-Containing Homopolymers by RAFT Polymerization. Polym. Chem. 2017, 8, 2773–2784. DOI: 10.1039/C7PY00091J.
  • Saleem, M.; Wang, L.; Yu, H.; Akram, M.; Ullah.; R. S.; Zain-Ul-Abdin. Synthesis of Amphiphilic Block Copolymers Containing Ferrocene-Boronic Acid and Their Micellization, Redox-Responsive Properties and Glucose Sensing. Colloid Polym. Sci. 2017, 295, 995–1006. DOI: 10.1007/s00396-017-4049-1.
  • Saleem, M.; Wang, L.; Yu.; H.; Zain-Ul-Abdin. Synthesis of Ferrocene Boronic Acid-Based Block Copolymers via RAFT Polymerization and Their Micellization, Redox Responsive and Glucose Sensing Properties. Arab. J. Chem. 2019, 12, 800–815. DOI: 10.1016/j.arabjc.2017.05.018.
  • Zhang, J. Y.; Ren, L. X.; Hardy, C. G.; Tang, C. B. Cobaltocenium-Containing Methacrylate Homopolymers, Block Copolymers, and Heterobimetallic Polymers via RAFT Polymerization. Macromolecules 2012, 45, 6857–6863. DOI: 10.1021/ma3012784.
  • Yan, Y.; Zhang, J. Y.; Qiao, Y. L.; Tang, C. B. Facile Preparation of Cobaltocenium Containing Polyelectrolyte via Click Chemistry and RAFT Polymerization. Macromol. Rapid Commun. 2014, 35, 254–259. DOI: 10.1002/marc.201300558.
  • Yang, P.; Pageni, P.; Kabir, M. P.; Zhu, T. Y.; Tang, C. B. Metallocene-Containing Homopolymers and Heterobimetallic Block Copolymers via Photoinduced RAFT Polymerization. ACS Macro Lett. 2016, 5, 1293–1300. DOI: 10.1021/acsmacrolett.6b00743.
  • Pageni, P.; Kabir, M. P.; Yang, P.; Tang, C. B. Binding of Cobaltocenium-Containing Polyelectrolytes with Anionic Probes. J. Inorg. Organomet. Polym. Mater. 2017, 27, 1100–1109. DOI: 10.1007/s10904-017-0561-5.
  • Yang, P.; Bam, M.; Pageni, P.; Zhu, T. Y.; Chen, Y. P.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Trio Act of Boronolectin with Antibiotic-Metal Complexed Macromolecules toward Broad-Spectrum Antimicrobial Efficacy. ACS Infect. Dis. 2017, 3, 845–853. DOI: 10.1021/acsinfecdis.7b00132.
  • Yang, P.; Pageni, P.; Rahman, M. A.; Bam, M.; Zhu, T. Y.; Chen, Y. P.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Gold Nanoparticles with Antibiotic-Metallopolymers toward Broad-Spectrum Antibacterial Effects. Adv. Healthcare Mater. 2019, 8, 1800854. DOI: 10.1002/adhm.201800854.
  • Rahman, M. A.; Cha, Y. J.; Yuan, L.; Pageni, P.; Zhu, T. Y.; Jui, M. S.; Tang, C. B. Polymerization-Induced Self-Assembly of Metallo-Polyelectrolyte Block Copolymers. J Polym Sci (2020) 2020, 58, 77–83. DOI: 10.1002/pola.29439.
  • Pageni, P.; Yang, P.; Chen, Y. P.; Huang, Y. C.; Bam, M.; Zhu, T. Y.; Nagarkatti, M.; Benicewicz, B. C.; Decho, A. W.; Tang, C. B. Charged Metallopolymer-Grafted Silica Nanoparticles for Antimicrobial Applications. Biomacromolecules 2018, 19, 417–425. DOI: 10.1021/acs.biomac.7b01510.
  • Pageni, P.; Yang, P.; Bam, M.; Zhu, T. Y.; Chen, Y. P.; Decho, A. W.; Nagarkatti, M.; Tang, C. B. Recyclable Magnetic Nanoparticles Grafted with Antimicrobial Metallopolymer-Antibiotic Bioconjugates. Biomaterials 2018, 178, 363–372. DOI: 10.1016/j.biomaterials.2018.05.007.
  • Sha, Y.; Zhu, T. Y.; Rahman, M. A.; Cha, Y. J.; Hwang, J.; Luo, Z. Y.; Tang, C. B. Synthesis of Site-Specific Charged Metallopolymers via Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization. Polymer 2020, 187, 122095. DOI: 10.1016/j.polymer.2019.122095.
  • Zhang, J. Y.; Yan, Y.; Chance, M. W.; Chen, J. H.; Hayat, J.; Ma, S. G.; Tang, C. B. Charged Metallopolymers as Universal Precursors for Versatile Cobalt Materials. Angew. Chem. Int. Ed. Engl. 2013, 52, 13387–13391. DOI: 10.1002/anie.201306432.
  • Canning, S. L.; Smith, G. N.; Armes, S. P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self Assembly. Macromolecules 2016, 49, 1985–2001. DOI: 10.1021/acs.macromol.5b02602.
  • Hadadpour, M.; Liu, Y. Q.; Chadha, P.; Ragogna, P. J. Overcoming a Tight Coil To Give a Random "Co" Polymer Derived from a Mixed Sandwich Cobaltocene. Macromolecules 2014, 47, 6207–6217. DOI: 10.1021/ma501323q.
  • Hadadpour, M.; Gwyther, J.; Manners, I.; Ragogna, P. J. Multifunctional Block Copolymer: Where Polymetallic and Polyelectrolyte Blocks Meet. Chem. Mater. 2015, 27, 3430–3440. DOI: 10.1021/acs.chemmater.5b00752.
  • Hadadpour, M.; Ragogna, P. J. Nanopatterning and Micropatterning of Cobalt Containing Block Copolymers via Phase-Separation and Lithographic Techniques. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 2747–2754. DOI: 10.1002/pola.27745.
  • Happ, B.; Schafer, J.; Menzel, R.; Hager, M. D.; Winter, A.; Popp, J.; Beckert, R.; Dietzek, B.; Schubert, U. S. Synthesis and Resonance Energy Transfer Study on a Random Terpolymer Containing a 2-(Pyridine-2-Yl) Thiazole Donor-Type Ligand and a Luminescent [Ru(Bpy) (2) (2-(Triazol-4-Yl) Pyridine)] (2+) Chromophore. Macromolecules 2011, 44, 6277–6287. DOI: 10.1021/ma201193e.
  • Breul, A. M.; Schafer, J.; Friebe, C.; Schlutter, F.; Paulus, R. M.; Festag, G.; Hager, M. D.; Winter, A.; Dietzek, B.; Popp, J.; Schubert, U. S. Synthesis and Characterization of Poly (Methyl Methacrylate) Backbone Polymers Containing Side-Chain Pendant Ruthenium (II) Bis-Terpyridine Complexes With an Elongated Conjugated System. Macromol. Chem. Phys. 2012, 213, 808–819. DOI: 10.1002/macp.201100499.
  • Sun, Y.; Chen, Z.; Puodziukynaite, E.; Jenkins, D. M.; Reynolds, J. R.; Schanze, K. S. Light Harvesting Arrays of Polypyridine Ruthenium (II) Chromophores Preparedby Reversible Addition-Fragmentation Chain Transfer Polymerization. Macromolecules 2012, 45, 2632–2642. DOI: 10.1021/ma202804u.
  • Ueki, T.; Shibayama, M.; Yoshida, R. Self-Oscillating Micelles. Chem. Commun. (Camb) 2013, 49, 6947–6949. DOI: 10.1039/c3cc38432b.
  • Tamate, R.; Ueki, T.; Shibayama, M.; Yoshida, R. Self-Oscillating Vesicles: Spontaneous Cyclic Structural Changes of Synthetic Diblock Copolymers. Angew. Chem. Int. Ed. Engl. 2014, 53, 11248–11252. DOI: 10.1002/anie.201406953.
  • Perrier, S.; Takolpuckdee, P.; Mars, C. A. Reversible Addition-Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules 2005, 38, 2033–2036. DOI: 10.1021/ma047611m.
  • Moad, G.; Rizzardo, E.; Thang, S. H. End-Functional Polymers, Thiocarbonylthio Group Removal/Transformation and Reversible Addition-Fragmentation-Chain Transfer (RAFT) Polymerization. Polym. Int. 2011, 60, 9–25. DOI: 10.1002/pi.2988.
  • Onoda, M.; Ueki, T.; Tamate, R.; Shibayama, M.; Yoshida, R. Amoeba-like Self-Oscillating Polymeric Fluids with Autonomous Sol-Gel Transition. Nat. Commun. 2017, 8, 15862. DOI: 10.1038/ncomms15862.
  • Yoshizawa, T.; Onoda, M.; Ueki, T.; Tamate, R.; Akimoto, A. M.; Yoshida, R. Fabrication of Self-Oscillating Micelles with a Built-In Oxidizing Agent. Angew. Chem. Int. Ed. Engl. 2020, 59, 3871–3875. DOI: 10.1002/anie.201913264.
  • Sun, W.; Parowatkin, M.; Steffen, W.; Butt, H. J.; Mailander, V.; Wu, S. Ruthenium-Containing Block Copolymer Assemblies:Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy. Adv. Healthc. Mater. 2016, 5, 467–473. DOI: 10.1002/adhm.201500827.
  • Sun, W.; Wen, Y.; Thiramanas, R.; Chen, M. J.; Han, J. X.; Gong, N. Q.; Wagner, M.; Jiang, S.; Meijer, M. S.; Bonnet, S.; et al. Red-Light-Controlled Release of Drug-Ru Complex Conjugates from Metallopolymer Micelles for Phototherapy in Hypoxic Tumor Environments. Adv. Funct. Mater. 2018, 28, 1804227. DOI: 10.1002/adfm.201804227.
  • Volz, D.; Hirschbiel, A. F.; Zink, D. M.; Friedrichs, J.; Nieger, M.; Baumann, T.; Brase, S.; Barner-Kowollik, C. Highly Efficient Photoluminescent Cu(I)-PyrPHOS-Metallopolymers. J. Mater. Chem. C 2014, 2, 1457–1462. DOI: 10.1039/c3tc32347a.
  • Muller, R.; Feuerstein, T. J.; Trouillet, V.; Bestgen, S.; Roesky, P. W.; Barner-Kowollik, C. Spatially-Resolved Multiple Metallopolymer Surfaces by Photolithography. Chemistry 2018, 24, 18933–18943. DOI: 10.1002/chem.201803966.
  • Breul, A. M.; Moraes, I. d.; Menzel, R.; Pfeffer, M.; Winter, A.; Hager, M. D.; Rau, S.; Dietzek, B.; Beckert, R.; Schubert, U. S. Light-Harvesting of Polymerizable 4-Hydroxy-1,3-Thiazole Monomers by Energy Transfer toward Photoactive Os (II) Metal Complexes in Linear Polymers. Polym. Chem. 2014, 5, 2715–2724. DOI: 10.1039/C3PY00915G.
  • Happ, B.; Kubel, J.; Pfeffer, M. G.; Winter, A.; Hager, M. D.; Dietzek, B.; Rau, S.; Schubert, U. S. Towards Hydrogen Evolution Initiated by LED Light: 2-(1H-1,2,3-Triazol-4-Yl) pyridine-Containing Polymers as Photocatalyst. Macromol. Rapid Commun. 2015, 36, 671–677. DOI: 10.1002/marc.201400672.
  • Gotz, S.; Geitner, R.; Abend, M.; Siegmann, M.; Zechel, S.; Vitz, J.; Grafe, S.; Schmitt, M.; Popp, J.; Hager, M. D.; Schubert, U. S. Palladium-SCS Pincer Complexes as Cross-Linking Moieties in Self-Healing Metallopolymers. Macromol. Rapid Commun. 2018, 39, 1800495. DOI: 10.1002/marc.201800495.
  • Gotz, S.; Abend, M.; Zechel, S.; Hager, M. D.; Schubert, U. S. Platinum-Terpyridine Complexes in Polymers: A Novel Approach for the Synthesis of Self-Healing Metallopolymers. J. Appl. Polym. Sci. 2019, 136, 47064. DOI: 10.1002/app.47064.
  • Zheng, W.; Chen, L. J.; Yang, G.; Sun, B.; Wang, X.; Jiang, B.; Yin, G. Q.; Zhang, L.; Li, X. P.; Liu, M. H.; et al. Construction of Smart Supramolecular Polymeric Hydrogels Cross Linked by Discrete Organoplatinum (II) Metallacycles via Post Assembly Polymerization. J. Am. Chem. Soc. 2016, 138, 4927–4937. DOI: 10.1021/jacs.6b01089.
  • Zheng, W.; Yang, G.; Shao, N. N.; Chen, L. J.; Ou, B.; Jiang, S. T.; Chen, G. S.; Yang, H. B. CO2 Stimuli-Responsive, Injectable Block Copolymer Hydrogels Cross-Linked by Discrete Organoplatinum (II) Metallacycles via Stepwise Post-Assembly Polymerization. J. Am. Chem. Soc. 2017, 139, 13811–13820. DOI: 10.1021/jacs.7b07303.
  • Dallerba, E.; Massi, M.; Lowe, A. B. Tetrazole Functional Copolymers: Facile Access to Well-Defined Rhenium(I)-Polymeric Luminescent Materials. Polymer 2020, 198, 122522. DOI: 10.1016/j.polymer.2020.122522.
  • Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, Function, Self-Assembly, and Applications of Bottlebrush Copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420. DOI: 10.1039/c4cs00329b.
  • Zhang, H.; Zhou, Z.; Chen, X. F.; Yu, B.; Luo, Z. Y.; Li, X.; Rahman, M. A.; Sha, Y. Sequence-Controlled Metallopolymers: Synthesis and Properties. Macromolecules 2021, 54, 9174–9184. DOI: 10.1021/acs.macromol.1c01436.
  • Nowalk, J. A.; Fang, C.; Short, A. L.; Weiss, R. M.; Swisher, J. H.; Liu, P.; Meyer, T. Y. Sequence-Controlled Polymers Through Entropy-Driven Ring-Opening Metathesis Polymerization: Theory, Molecular Weight Control, and Monomer Design. J. Am. Chem. Soc. 2019, 141, 5741–5752. DOI: 10.1021/jacs.8b13120.
  • Nomura, K.; Abdellatif, M. M. Precise Synthesis of Polymers Containing Functional End Groups by Living Ring-Opening Metathesis Polymerization (ROMP): Efficient Tools for Synthesis of Block/Graft Copolymers. Polymer 2010, 51, 1861–1881. DOI: 10.1016/j.polymer.2010.02.028.
  • Bielawski, C. W.; Grubbs, R. H. Living Ring-Opening Metathesis Polymerization. Prog. Polym. Sci. 2007, 32, 1–29. DOI: 10.1016/j.progpolymsci.2006.08.006.
  • Walsh, D. J.; Lau, S. H.; Hyatt, M. G.; Guironnet, D. Kinetic Study of Living Ring-Opening Metathesis Polymerization with Third-Generation Grubbs Catalysts. J. Am. Chem. Soc. 2017, 139, 13644–13647. DOI: 10.1021/jacs.7b08010.
  • Zhang, L.; Qiu, G. R.; Liu, F. F.; Liu, X.; Mu, S. D.; Long, Y. R.; Zhao, Q. X.; Liu, Y.; Gu, H. B. Controlled ROMP Synthesis of Side-Chain Ferrocene and Adamantane-Containing Diblock Copolymer for the Construction of Redox-Responsive Micellar Carriers. React. Funct. Polym. 2018, 132, 60–73. DOI: 10.1016/j.reactfunctpolym.2018.09.003.
  • Gu, H. B.; Rapakousiou, A.; Castel, P.; Guidolin, N.; Pinaud, N.; Ruiz, J.; Astruc, D. Living Ring-Opening Metathesis Polymerization Synthesis and Redox-Sensing Properties of Norbornene Polymers and Copolymers Containing Ferrocenyl and Tetraethylene Glycol Groups. Organometallics 2014, 33, 4323–4335. DOI: 10.1021/om5006897.
  • Liu, X.; Ling, Q. J.; Zhao, L.; Qiu, G. R.; Wang, Y. H.; Song, L. X.; Zhang, Y.; Ruiz, J.; Astruc, D.; Gu, H. B. New ROMP Synthesis of Ferrocenyl Dendronized Polymers. Macromol. Rapid Commun. 2017, 38, 1700448. DOI: 10.1002/marc.201700448.
  • Rapakousiou, A.; Deraedt, C.; Gu, H. B.; Salmon, L.; Belin, C.; Ruiz, J.; Astruc, D. Mixed-Valent Click Intertwined Polymer Units Containing Biferrocenium Chloride Side Chains Form Nanosnakes That Encapsulate Gold Nanoparticles. J. Am. Chem. Soc. 2014, 136, 13995–13998. DOI: 10.1021/ja5079267.
  • Rapakousiou, A.; Deraedt, C.; Irigoyen, J.; Wang, Y. L.; Pinaud, N.; Salmon, L.; Ruiz, J.; Moya, S.; Astruc, D. Synthesis and Redox Activity of "Clicked" Triazolylbiferrocenyl Polymers, Network Encapsulation of Gold and Silver Nanoparticles and Anion Sensing. Inorg. Chem. 2015, 54, 2284–2299. DOI: 10.1021/ic5028916.
  • Liu, X.; Qiu, G. R.; Zhang, L.; Liu, F. F.; Mu, S. D.; Long, Y. R.; Zhao, Q. X.; Liu, Y.; Gu, H. B. Controlled ROMP Synthesis of Ferrocene-Containing Amphiphilic Dendronized Diblock Copolymers as Redox-Controlled Polymer Carriers. Macromol. Chem. Phys. 2018, 219, 1800273. DOI: 10.1002/macp.201800273.
  • Qiu, G. R.; Liu, X.; Wang, B. R.; Gu, H. B.; Wang, W. X. Ferrocene-Containing Amphiphilic Polynorbornenes as Biocompatible Drug Carriers. Polym. Chem. 2019, 10, 2527–2539. DOI: 10.1039/C9PY00332K.
  • Gu, H. B.; Ciganda, R.; Hernandez, R.; Castel, P.; Zhao, P. X.; Ruiz, J.; Astruc, D. ROMP Synthesis and Redox Properties of Polycationic Metallopolymers Containing the Electron-Reservoir Complex [Fe(Eta(5)-C5H5) (Eta(6)-C6Me6)] [PF6]. Macromolecules 2015, 48, 6071–6076. DOI: 10.1021/acs.macromol.5b01603.
  • Gu, H. B.; Ciganda, R.; Hernandez, R.; Castel, P.; Vax, A.; Zhao, P. X.; Ruiz, J.; Astruc, D. Diblock Metallocopolymers Containing Various Iron Sandwich Complexes: Living ROMP Synthesis and Selective Reversible Oxidation. Polym. Chem. 2016, 7, 2358–2371. DOI: 10.1039/C6PY00202A.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Vax, A.; Gregurec, D.; Irigoyen, J.; Moya, S.; Salmon, L.; Zhao, P. X.; Ruiz, J.; et al. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI and Au Nanoparticles. Chemistry 2015, 21, 18177–18186. DOI: 10.1002/chem.201503248.
  • Mu, S. D.; Liu, W. T.; Zhao, L.; Long, Y. R.; Gu, H. B. Antimicrobial AgNPs Composites of Gelatin Hydrogels Crosslinked by Ferrocene-Containing Tetrablock Terpolymer. Polymer 2019, 169, 80–94. DOI: 10.1016/j.polymer.2019.02.047.
  • Long, Y. R.; Song, B.; Shi, C. T.; Liu, W. T.; Gu, H. B. AuNPs Composites of Gelatin Hydrogels Crosslinked by Ferrocenecontaining Polymer as Recyclable Supported Catalysts. J. Appl. Polym. Sci. 2020, 137, 48653. DOI: 10.1002/app.48653.
  • Liu, X.; Liu, F.; Astruc, D.; Lin, W.; Gu, H. Highly-Branched Amphiphilic Organometallic Dendronized Diblock Copolymer: ROMP Synthesis, Self-Assembly and Long-Term Au and Ag Nanoparticle Stabilizer for High-Efficiency Catalysis. Polymer 2019, 173, 1–10. DOI: 10.1016/j.polymer.2019.04.021.
  • Liu, X.; Liu, F. F.; Wang, Y. L.; Gu, H. B. Ferrocene-Containing Amphiphilic Dendronized Random Copolymer as Efficient Stabilizer for Reusable Gold Nanoparticles in Catalysis. React. Funct. Polym. 2019, 143, 104325. DOI: 10.1016/j.reactfunctpolym.2019.104325.
  • Yasir, M.; Liu, P.; Tennie, I. K.; Kilbinger, A. F. M. Catalytic Living Ring-Opening Metathesis Polymerization with Grubbs’ Second- and Third-Generation Catalysts. Nat. Chem. 2019, 11, 488–494. DOI: 10.1038/s41557-019-0239-4.
  • Sha, Y.; Zhang, Y. D.; Zhu, T. Y.; Tan, S. B.; Cha, Y. J.; Craig, S. L.; Tang, C. B. Ring-Closing Metathesis and Ring-Opening Metathesis Polymerization toward Main-Chain Ferrocene-Containing Polymers. Macromolecules 2018, 51, 9131–9139. DOI: 10.1021/acs.macromol.8b02064.
  • Sha, Y.; Zhang, Y. D.; Xu, E. H.; Wang, Z.; Zhu, T. Y.; Craig, S. L.; Tang, C. B. Quantitative and Mechanistic Mechanochemistry in Ferrocene Dissociation. ACS Macro Lett. 2018, 7, 1174–1179. DOI: 10.1021/acsmacrolett.8b00625.
  • Sha, Y.; Rahman, M. A.; Zhu, T. Y.; Cha, Y. J.; McAlister, C. W.; Tang, C. B. ROMPI-CDSA: Crystallization-Driven Self-Assembly of Metallo-Block Copolymers. Chem. Sci. 2019, 10, 9782–9787. DOI: 10.1039/c9sc03056e.
  • Ren, L.; Zhang, J.; Bai, X.; Hardy, C. G.; Shimizu, K. D.; Tang, C. Preparation of Cationic Cobaltocenium Polymers and Block Copolymers by “Living” Ring-Opening Metathesis Polymerization. Chem. Sci. 2012, 3, 580–583. DOI: 10.1039/C1SC00783A.
  • Ren, L.; Zhang, J.; Hardy, C. G.; Ma, S.; Tang, C. Cobaltocenium-Containing Block Copolymers: Ring-Opening Metathesis Polymerization. Self-Assembly and Precursors for Template Synthesis of Inorganic Nanoparticles. Macromol. Rapid Commun. 2012, 33, 510–516. DOI: 10.1002/marc.201100732.
  • Zhang, J.; Pellechia, P. J.; Hayat, J.; Hardy, C. G.; Tang, C. Quantitative and Qualitative Counterion Exchange in Cationic Metallocene Polyelectrolytes. Macromolecules 2013, 46, 1618–1624. DOI: 10.1021/ma4000013.
  • Zhu, T. Y.; Xu, S. C.; Rahman, A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, M. P.; Zhou, X. D.; Tang, C. B. Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes. Angew. Chem. Int. Ed. Engl. 2018, 57, 2388–2392. DOI: 10.1002/anie.201712387.
  • Zhu, T. Y.; Sha, Y.; Firouzjaie, H. A.; Peng, X.; Cha, Y. J.; Dissanayake, D. M. M. M.; Smith, M. D.; Vannucci, A. K.; Mustain, W. E.; Tang, C. B. Redox- and Alkaline-Stable Metallo-Polyelectrolytes. J. Am. Chem. Soc. 2020, 142, 1083–1089. DOI: 10.1021/jacs.9b12051.
  • Wang, Y. L.; Rapakousiou, A.; Astruc, D. ROMP Synthesis of Cobalticenium-Enamine Polyelectrolytes. Macromolecules 2014, 47, 3767–3774. DOI: 10.1021/ma5007864.
  • Gu, H. B.; Ciganda, R.; Hernandez, R.; Castel, P.; Zhao, P. X.; Ruiz, J.; Astruc, D. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties. Macromol. Rapid Commun. 2016, 37, 630–636. DOI: 10.1002/marc.201500679.
  • Ciganda, R.; Gu, H. B.; Castel, P.; Zhao, P. X.; Ruiz, J.; Hernandez, R.; Astruc, D. Living ROMP Synthesis and Redox Properties of Diblock Ferrocene/Cobalticenium Copolymers. Macromol. Rapid Commun. 2016, 37, 105–111. DOI: 10.1002/marc.201500566.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Ruiz, J.; Astruc, D. Living ROMP Syntheses and Redox Properties of Triblock Metallocopolymer Redox Cascades. Macromolecules 2016, 49, 4763–4773. DOI: 10.1021/acs.macromol.6b01046.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Ruiz, J.; Astruc, D. Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Side-Chain Iron and Cobalt Sandwich Complexes. Macromol. Chem. Phys. 2018, 219, 1800384. DOI: 10.1002/macp.201800384.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Moya, S.; Hernandez, R.; Ruiz, J.; Astruc, D. Tetrablock Metallopolymer Electrochromes. Angew. Chem. Int. Ed. Engl. 2018, 57, 2204–2208. DOI: 10.1002/anie.201712945.
  • Yan, Y.; Zhang, J. Y.; Wilbon, P.; Qiao, Y. L.; Tang, C. B. Ring-Opening Metathesis Polymerization of 18-e Cobalt(I)-Containing Norbornene and Application as Heterogeneous Macromolecular Catalyst in Atom Transfer Radical Polymerization. Macromol. Rapid Commun. 2014, 35, 1840–1845.
  • Al-Badri, Z. M.; Tew, G. N. Well-Defined Acetylene-Functionalized Oxanorbornene Polymers and Block Copolymers. Macromolecules 2008, 41, 4173–4179. DOI: 10.1021/ma8004179.
  • Al-Badri, Z. M.; Maddikeri, R. R.; Zha, Y.; Thaker, H. D.; Dobriyal, P.; Shunmugam, R.; Russell, T. P.; Tew, G. N. Room Temperature Magnetic Materials from Nanostructured Diblock Copolymers. Nat. Commun. 2011, 2, 482–486. DOI: 10.1038/ncomms1485.
  • Zha, Y.; Maddikeri, R.; Gido, S.; Tew, G. Magnetic Properties of Cobalt-Containing Diblock Copolymers with Cylindrical Morphology of Different Domain Sizes. J. Inorg. Organomet. Polym. 2013, 23, 89–94. DOI: 10.1007/s10904-012-9744-2.
  • Zha, Y.; Thaker, H. D.; Maddikeri, R. R.; Gido, S. P.; Tuominen, M. T.; Tew, G. N. Nanostructured Block-Random Copolymers with Tunable Magnetic Properties. J. Am. Chem. Soc. 2012, 134, 14534–14541. DOI: 10.1021/ja305249b.
  • Zhang, K.; Zha, Y. P.; Peng, B.; Chen, Y. M.; Tew, G. N. Metallo-Supramolecular Cyclic Polymers. J. Am. Chem. Soc. 2013, 135, 15994–15997. DOI: 10.1021/ja407381f.
  • Sha, Y.; Zhang, Y. D.; Xu, E. H.; McAlister, C. W.; Zhu, T. Y.; Craig, S. L.; Tang, C. B. Generalizing Metallocene Mechanochemistry to Ruthenocene Mechanophores. Chem. Sci. 2019, 10, 4959–4965. DOI: 10.1039/c9sc01347d.
  • Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent Advances in Alkoxylation Chemistry of Polyoxometalates: From Synthetic Strategies, Structural Overviews to Functional Applications. Coord. Chem. Rev. 2019, 378, 395–414. DOI: 10.1016/j.ccr.2017.10.025.
  • Miao, W. K.; Yan, Y. K.; Wang, X. L.; Xiao, Y.; Ren, L. J.; Zheng, P.; Wang, C. H.; Ren, L. X.; Wang, W. Incorporation of Polyoxometalates into Polymers to Create Linear Poly(Polyoxometalate)s with Catalytic Function. ACS Macro Lett. 2014, 3, 211–215. DOI: 10.1021/mz5000202.
  • Voevodin, A.; Campos, L. M.; Roy, X. Multifunctional Vesicles from a Self-Assembled Cluster-Containing Diblock Copolymer. J. Am. Chem. Soc. 2018, 140, 5607–5611. DOI: 10.1021/jacs.8b02041.
  • Paquette, J. A.; Kenaree, A. R.; Gilroy, J. B. Metal-Containing Polymers Bearing Pendant Nickel (II) Complexes of Goedken’s Macrocycle. Polym. Chem. 2017, 8, 2164–2172. DOI: 10.1039/C7PY00259A.
  • Yan, Y.; Deaton, T. M.; Zhang, J. Y.; He, H. K.; Hayat, J.; Pageni, P.; Matyjaszewski, K.; Tang, C. B. Syntheses of Monosubstituted Rhodocenium Derivatives, Monomers, and Polymers. Macromolecules 2015, 48, 1644–1650. DOI: 10.1021/acs.macromol.5b00471.
  • Wilson, B. J.; Brantley, J. N. Synthesis and Reactivity of Metallocarbene-Containing Polymers. J. Am. Chem. Soc. 2019, 141, 12453–12457. DOI: 10.1021/jacs.9b04077.
  • Wright, D. B.; Proetto, M. T.; Touve, M. A.; Gianneschi, N. C. Ring-Opening Metathesis Polymerization-Induced Self-Assembly (ROMPISA) of a Cisplatin Analogue for High Drug-Loaded Nanoparticles. Polym. Chem. 2019, 10, 2996–3000. DOI: 10.1039/C8PY01539B.
  • Szwarc, M. ‘Living’ Polymers. Nature 1956, 178, 1168–1169. DOI: 10.1038/1781168a0.
  • Zhou, Y. N.; Li, J. J.; Wu, Y. Y.; Luo, Z. H. Role of External Field in Polymerization: Mechanism and Kinetics. Chem. Rev. 2020, 120, 2950–3048. DOI: 10.1021/acs.chemrev.9b00744.
  • Rulkens, R.; Lough, A. J.; Manners, I. Anionic Ring-Opening Oligomerization and Polymerization of Silicon-Bridged [1] Ferrocenophanes: Characterization of Short-Chain Models for Poly(Ferrocenylsilane) High Polymers. J. Am. Chem. Soc. 1994, 116, 797–798. DOI: 10.1021/ja00081a062.
  • Rulkens, R.; Ni, Y. Z.; Manners, I. Living Anionic Ring-Opening Polymerization of Silicon-Bridged [l]Ferrocenophanes: Synthesis and Characterization of Poly(Ferrocenylsilane)—Polysiloxane Block Copolymers. J. Am. Chem. Soc. 1994, 116, 12121–12122. DOI: 10.1021/ja00105a090.
  • Ni, Y. Z.; Rulkens, R.; Manners, I. Transition Metal-Based Polymers with Controlled Architectures: Well-Defined Poly(Ferrocenylsilane) Homopolymers and Multiblock Copolymers via the Living Anionic Ring-Opening Polymerization of Silicon-Bridged [1] Ferrocenophanes. J. Am. Chem. Soc. 1996, 118, 4102–4114. DOI: 10.1021/ja953805t.
  • Tanabe, M.; Manners, I. Photolytic Living Anionic Ring-Opening Polymerization (ROP) of Silicon-Bridged [1] Ferrocenophanes via an Iron-Cyclopentadienyl Bond Cleavage Mechanism. J. Am. Chem. Soc. 2004, 126, 11434–11435. DOI: 10.1021/ja046657s.
  • Musgrave, R. A.; Russell, A. D.; Whittell, G. R.; Haddow, M. F.; Manners, I. Tuning the Polymerization Behavior of Silicon-Bridged [1] Ferrocenophanes Using Bulky Substituents. Organometallics 2015, 34, 897–907. DOI: 10.1021/om5012598.
  • Wang, Z.; Masson, G.; Peiris, F. C.; Ozin, G. A.; Manners, I. Living Photolytic Ring-Opening Polymerization of Amino-Functionalized [1] Ferrocenophanes: Synthesis and Layer-by-Layer Self-Assembly of Well-Defined Water-Soluble Polyferrocenylsilane Polyelectrolytes. Chemistry 2007, 13, 9372–9383. DOI: 10.1002/chem.200700580.
  • Smith, G. S.; Patra, S. K.; Vanderark, L.; Saithong, S.; Charmant, J. P. H.; Manners, I. Photocontrolled Living Anionic Polymerization of Silicon-Bridged [1] Ferrocenophanes with Fluorinated Substituents: Synthesis and Characterization of Fluorinated Polyferrocenylsilane (PFS) Homopolymers and Block Copolymers. Macromol. Chem. Phys. 2010, 211, 303–312. DOI: 10.1002/macp.200900395.
  • Elbert, J.; Didzoleit, H.; Fasel, C.; Ionescu, E.; Riedel, R.; Stuhn, B.; Gallei, M. Surface-Initiated Anionic Polymerization of [1] Silaferrocenophanes for the Preparation of Colloidal Preceramic Materials. Macromol. Rapid Commun. 2015, 36, 597–603. DOI: 10.1002/marc.201400581.
  • Tonhauser, C.; Alkan, A.; Schomer, M.; Dingels, C.; Ritz, S.; Mailander, V.; Frey, H.; Wurm, F. R. Ferrocenyl Glycidyl Ether: A Versatile Ferrocene Monomer for Copolymerization with Ethylene Oxide to Water-Soluble, Thermoresponsive Copolymers. Macromolecules 2013, 46, 647–655. DOI: 10.1021/ma302241w.
  • Alkan, A.; Klein, R.; Shylin, S. I.; Kemmer-Jonas, U.; Frey, H.; Wurm, F. R. Water-Soluble and Redox-Responsive Hyperbranched Polyether Copolymers Based on Ferrocenyl Glycidyl Ether. Polym. Chem. 2015, 6, 7112–7118. DOI: 10.1039/C5PY01162K.
  • Morsbach, J.; Elbert, J.; Ruttiger, C.; Winzen, S.; Frey, H.; Gallei, M. Polyvinylferrocene-Based Amphiphilic Block Copolymers Featuring Functional Junction Points for Cross-Linked Micelles. Macromolecules 2016, 49, 3406–3414. DOI: 10.1021/acs.macromol.6b00514.
  • Ruttiger, C.; Hubner, H.; Schottner, S.; Winter, T.; Cherkashinin, G.; Kuttich, B.; Stuhn, B.; Gallei, M. Metallopolymer-Based Block Copolymers for the Preparation of Porous and Redox-Responsive Materials. ACS Appl. Mater. Interfaces 2018, 10, 4018–4030. DOI: 10.1021/acsami.7b18014.
  • Ruttiger, C.; Gemmer, L.; Schottner, S.; Kuttich, B.; Stuhn, B.; Gallei, M. Preparation and Self-Assembly of Polyferrocenyldimethylsilane-Containing Tri- and Pentablock Terpolymers. J. Organomet. Chem. 2019, 882, 80–89. DOI: 10.1016/j.jorganchem.2019.01.001.
  • Herzog, N.; Hubner, H.; Ruttiger, C.; Gallei, M.; Andrieu-Brunsen, A. Functional Metalloblock Copolymers for the Preparation and In Situ Functionalization of Porous Silica Films. Langmuir 2020, 36, 4015–4024. DOI: 10.1021/acs.langmuir.0c00245.
  • Gilroy, J. B.; Patra, S. K.; Mitchels, J. M.; Winnik, M. A.; Manners, I. Main-Chain Heterobimetallic Block Copolymers: Synthesis and Self-Assembly of Polyferrocenylsilane-b-Poly(Cobaltoceniumethylene). Angew. Chem. Int. Ed. Engl. 2011, 50, 5851–5855. DOI: 10.1002/anie.201008184.
  • Jarrett-Wilkins, C. N.; Musgrave, R. A.; Hailes, R. L. N.; Harniman, R. L.; Faul, C. F. J.; Manners, I. Linear and Branched Fiber-like Micelles from the Crystallization-Driven Self-Assembly of Heterobimetallic Block Copolymer Polyelectrolyte/Surfactant Complexes. Macromolecules 2019, 52, 7289–7300. DOI: 10.1021/acs.macromol.9b01370.
  • Alkan, A.; Gleede, T.; Wurm, F. R. Ruthenocenyl Glycidyl Ether: A Ruthenium-Containing Epoxide for Anionic Polymerization. Organometallics 2017, 36, 3023–3028. DOI: 10.1021/acs.organomet.7b00278.
  • Al-Kharusi, H. N.; Wu, L. P.; Whittell, G.; Harniman, R.; Manners, I. Synthesis, Thin-Film Self-Assembly, and Pyrolysis of Ruthenium-Containing Polyferrocenylsilane Block Copolymers. Polym. Chem. 2018, 9, 2951–2963. DOI: 10.1039/C8PY00168E.
  • Sha, Y.; Zhou, Z.; Zhang, J. L.; Chen, X. F.; Luo, Z. Y.; Li, X. Heterobimetallic Block Copolymers with a Combined Main-Chain/Side-Chain Topology. Chem. Commun. (Camb) 2022, 59, 207–210. DOI: 10.1039/d2cc05990h.
  • Song, S. F.; Zhou, H.; Manners, I.; Winnik, M. A. Block Copolymer Self-Assembly: Polydisperse Corona-Forming Blocks Leading to Uniform Morphologies. Chemistry 2021, 7, 2800–2821. DOI: 10.1016/j.chempr.2021.08.003.
  • Song, S. F.; Zhou, H.; Ye, S. Y.; Tam, J.; Howe, J. Y.; Manners, I.; Winnik, M. A. Spherulite-Like Micelles. Angew. Chem. Int. Ed. 2021, 60, 10950–10956. DOI: 10.1002/anie.202101177.
  • Lei, S. X.; Tian, J.; Fukui, T.; Winnik, M. A.; Manners, I. Probing the Analogy between Living Crystallization-Driven Self-Assembly and Living Covalent Polymerizations: Length-Independent Growth Behavior for 1D Block Copolymer Nanofibers. Macromolecules 2022, 55, 359–369. DOI: 10.1021/acs.macromol.1c02241.
  • Song, S. F.; Liu, X. M.; Nikbin, E.; Howe, J. Y.; Yu, Q.; Manners, I.; Winnik, M. A. Uniform 1D Micelles and Patchy & Block Comicelles via Scalable, One-Step Crystallization-Driven Block Copolymer Self-Assembly. J. Am. Chem. Soc. 2021, 143, 6266–6280. DOI: 10.1021/jacs.1c02395.
  • Cai, J. D.; Li, C.; Kong, N.; Lu, Y.; Lin, G. Y.; Wang, X. Y.; Yao, Y.; Manners, I.; Qiu, H. B. Tailored Multifunctional Micellar Brushes via Crystallization-Driven Growth from a Surface. Science 2019, 366, 1095–1098. DOI: 10.1126/science.aax9075.
  • Song, S. F.; Zhou, H.; Puzhitsky, M.; Zhang, Y. F.; Hicks, G.; Lu, Y. J.; Manners, I.; Winnik, M. A. Crystallization-Driven Self-Assembly of a Block Copolymer with Amphiphilic Pendant Groups. Macromolecules 2021, 54, 930–940. DOI: 10.1021/acs.macromol.0c02521.
  • Li, Y.; Qin, Y.; Shang, Y. Q.; Li, Y. R.; Liu, F.; Luo, J.; J.; Zhu, J. D.; Guo, X. L.; Wang, Z.; Zhao, Y. J. Mechano-Responsive Leapfrog Micelles Enable Interactive Apoptotic and Ferroptotic Cancer Therapy. Adv. Funct. Materials 2022, 32, 2112000. DOI: 10.1002/adfm.202112000.
  • Sha, Y.; Zhang, H.; Zhou, Z.; Luo, Z. Y. Stress-Responsive Properties of Metallocenes in Metallopolymers. Polym. Chem. 2021, 12, 2509–2521. DOI: 10.1039/D1PY00311A.
  • Fu, G. R.; He, Y. N.; Li, B. N.; Liu, L.; Li, W. T.; Zhang, Z.; Lu, X. Q. Zn2Yb-Grafted and Star-Shaped Metallopolymers for Efficient near-Infrared (NIR) Polymer Light-Emitting Diodes (PLEDs). J. Mater. Chem. C 2018, 6, 8950–8957. DOI: 10.1039/C8TC02776E.
  • Zhou, Z.; Wu, W.; Liao, X. P.; Qin, J. Y.; Song, Z. B.; Xu, S. L.; Luo, Z. Y.; Li, X.; Sha, Y. Synthesis and Properties of Alternating Metallopolymers. Sci. Sin-Chim. 2022, 52, 504–514. DOI: 10.1360/SSC-2021-0179.
  • He, R.; Domingues, R. A.; Valandro, S.; Schanze, K. S. Platinum Poly-Yne Featuring N-Heterocyclic Carbene Ligands: Synthesis, Properties, and Organic Light-Emitting Diode Application. Macromolecules 2021, 54, 9888–9895. DOI: 10.1021/acs.macromol.1c01344.
  • Chen, B. L.; Wong, W. Y. Introducing a Redox-Active Ferrocenyl Moiety onto a Polythiophene Derivative towards High-Performance Flexible All-Solid-State Symmetric Supercapacitors. J. Mater. Chem. A 2022, 10, 7968–7977. DOI: 10.1039/D2TA00016D.
  • Zeng, X. L.; Wang, Y. F.; Han, J. X.; Sun, W.; Butt, H. J.; Liang, X. J.; Wu, S. Fighting against Drug-Resistant Tumors Using a Dual-Responsive Pt (IV)/Ru (II) Bimetallic Polymer. Adv. Mater. 2020, 32, 2004766. DOI: 10.1002/adma.202004766.
  • Cha, Y. J.; Zhu, T. Y.; Sha, Y.; Lin, H. N.; Hwang, J.; Seraydarian, M.; Craig, S. L.; Tang, C. B. Mechanochemistry of Cationic Cobaltocenium Mechanophore. J. Am. Chem. Soc. 2021, 143, 11871–11878. DOI: 10.1021/jacs.1c05233.
  • Mukkatt, I.; Mohanachandran, A. P.; Nirmala, A.; Patra, D.; Sukumaran, P. A.; Pillai, R. S.; Rakhi, R. B.; Shankar, S.; Ajayaghosh, A. Tunable Capacitive Behavior in Metallopolymer-Based Electrochromic Thin Film Supercapacitors. ACS Appl. Mater. Interfaces 2022, 14, 31900–31910. DOI: 10.1021/acsami.2c05744.
  • Yang, P.; Luo, Y. Y.; Kurnaz, L. B.; Bam, M.; Yang, X. M.; Decho, A. W.; Nagarkatti, M.; Tang, C. B. Biodegradable Polycaprolactone Metallopolymer-Antibiotic Bioconjugates Containing Phenylboronic Acid and Cobaltocenium for Antimicrobial Application. Biomater. Sci. 2021, 9, 7237–7246. DOI: 10.1039/d1bm00970b.
  • Greenfield, J. L.; Di Nuzzo, D.; Evans, E. W.; Senanayak, S. P.; Schott, S.; Deacon, J. T.; Peugeot, A.; Myers, W. K.; Sirringhaus, H.; Friend, R. H.; Nitschke, J. R. Electrically Induced Mixed Valence Increases the Conductivity of Copper Helical Metallopolymers. Adv. Mater. 2021, 33, 2100403. DOI: 10.1002/adma.202100403.
  • Meurer, J.; Batz, T.; Hniopek, J.; Zechel, S.; Schmitt, M.; Popp, J.; Hager, M. D.; Schubert, U. S. Dual Crosslinked Metallopolymers Using Orthogonal Metal Complexes as Rewritable Shape-Memory Polymers. J. Mater. Chem. A 2021, 9, 15051–15058. DOI: 10.1039/D1TA03064G.
  • Xu, X. W.; Jerca, F. A.; Jerca, V. V.; Hoogenboom, R. Self-Healing and Moldable Poly(2-Isopropenyl-2-Oxazoline) Supramolecular Hydrogels Based on a Transient Metal Coordination Network. Macromolecules 2020, 53, 6566–6575. DOI: 10.1021/acs.macromol.0c01242.
  • Yuan, Z. Y.; Wang, J.; Wang, Y. M.; Zhong, Y. J.; Zhang, X. S.; Li, L.; Wang, J. Y.; Lincoln, S. F.; Guo, X. H. Redox-Controlled Voltage Responsive Micelles Assembled by Noncovalently Grafted Polymers for Controlled Drug Release. Macromolecules 2019, 52, 1400–1407. DOI: 10.1021/acs.macromol.8b02641.
  • Xu, L.; Wang, H. R.; Tian, H. R.; Zhang, M. Z.; He, J. L.; Ni, P. H. Facile Construction of Noncovalent Graft Copolymers with Triple Stimuli-Responsiveness for Triggered Drug Delivery. Polym. Chem. 2021, 12, 2152–2164. DOI: 10.1039/D1PY00135C.
  • He, M. M.; He, G. L.; Wang, P. Y.; Jiang, S. H.; Jiao, Z. Y.; Xi, D. M.; Miao, P. C.; Leng, X. F.; Wei, Z. Y.; Li, Y.; et al. A Sequential Dual-Model Strategy Based on Photoactivatable Metallopolymer for On-Demand Release of Photosensitizers and Anticancer Drugs. Adv. Sci. 2021, 8, 2103334. DOI: 10.1002/advs.202103334.
  • Ke, L. B.; Wei, F. M.; Xie, L. N.; Karges, J.; Chen, Y.; Ji, L. N.; Chao, H. A Biodegradable Iridium (III) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angew. Chem. Int. Ed. Engl. 2022, 61, e202205429. DOI: 10.1002/anie.202205429.
  • Zhang, J. Y.; Chen, Y. P.; Miller, K. P.; Ganewatta, M. S.; Bam, M.; Yan, Y.; Nagarkatti, M.; Decho, A. W.; Tang, C. B. Antimicrobial Metallopolymers and Their Bioconjugates with Conventional Antibiotics against Multidrug-Resistant Bacteria. J. Am. Chem. Soc. 2014, 136, 4873–4876. DOI: 10.1021/ja5011338.
  • Borchers, P. S.; Anufriev, I.; Vitz, J.; Gorls, H.; Elbert, J.; Nischang, I.; Hager, M. D.; Schubert, U. S. Regaining Potential: Studies Concerning 2-Ferrocenylethyl Methacrylate, Its Polymers, and Application in Redox Flow Batteries. Macromolecules 2022, 55, 1576–1589. DOI: 10.1021/acs.macromol.1c02565.
  • Borchers, P. S.; Strumpf, M.; Friebe, C.; Nischang, I.; Hager, M. D.; Elbert, J.; Schubert, U. S. Aqueous Redox Flow Battery Suitable for High Temperature Applications Based on a Tailor-Made Ferrocene Copolymer. Adv. Energy Mater. 2020, 10, 2001825. DOI: 10.1002/aenm.202001825.
  • Zhu, T. Y.; Lu, Y. Y.; Huang, K.; Tang, C. B. Metallopolymer as a Solid Electrolyte for Rechargeable Zn-Metal Alkaline Batteries. ACS Materials Lett. 2021, 3, 799–806. DOI: 10.1021/acsmaterialslett.1c00219.
  • Joshi, S.; Yip, Y. J.; Turel, T.; Verma, S.; Valiyaveettil, S. Cu-Tetracatechol Metallopolymer Catalyst for Three Component Click Reactions and Beta-Borylation of Alpha,Beta-Unsaturated Carbonyl Compounds. Chem. Commun. (Camb) 2020, 56, 13044–13047. DOI: 10.1039/d0cc05823h.
  • Liu, F. F.; Liu, X.; Astruc, D.; Gu, H. B. Dendronized Triazolyl-Containing Ferrocenyl Polymers as Stabilizers of Gold Nanoparticles for Recyclable Two-Phase Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2019, 533, 161–170. DOI: 10.1016/j.jcis.2018.08.062.
  • Liu, Q. Q.; Wang, Q.; C.; Wang, J.; Li, Z.; G.; Liu, J. J.; Sun, X. Y.; Li, J.; Lei, Y. P.; Dai, L. M.; Wang, P. S. TpyCo(2+)-Based Coordination Polymers by Water-Induced Gelling Trigged Efficient Oxygen Evolution Reaction. Adv. Funct. Mater. 2020, 30, 2000593. DOI: 10.1002/adfm.202000593.
  • Lee, Y. S.; Yuan, M. W.; Cai, R.; Lim, K.; Minteer, S. D. Nitrogenase Bioelectrocatalysis: ATP-Independent Ammonia Production Using a Redox Polymer/MoFe Protein System. ACS Catal. 2020, 10, 6854–6861. DOI: 10.1021/acscatal.0c01397.
  • Pan, Y.; Zhang, N.; Liu, C. H.; Fan, S.; Guo, S.; Zhang, Z. M.; Zhu, Y. Y. Boosting Photocatalytic Activities for Organic Transformations through Merging Photocatalyst and Transition-Metal Catalyst in Flexible Polymers. ACS Catal. 2020, 10, 11758–11767. DOI: 10.1021/acscatal.0c03597.
  • Chen, J. F.; Li, K.; Shon, J. S. L.; Zimmerman, S. C. Single-Chain Nanoparticle Delivers a Partner Enzyme for Concurrent and Tandem Catalysis in Cells. J. Am. Chem. Soc. 2020, 142, 4565–4569. DOI: 10.1021/jacs.9b13997.
  • Liu, X.; Ren, Z. J.; Liu, F. F.; Zhao, L.; Ling, Q. J.; Gu, H. B. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host − Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions. ACS Appl. Mater. Interfaces 2021, 13, 14612–14622. DOI: 10.1021/acsami.1c03213.
  • Liu, F. F.; Liu, X.; Gu, H. B. Multi-Network Poly(β-Cyclodextrin)/PVA/Gelatin/Carbon Nanotubes Composite Hydrogels Constructed by Multiple Dynamic Crosslinking as Flexible Electronic Devices. Macro. Materials & Eng. 2022, 307, 2100724. DOI: 10.1002/mame.202100724.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.