295
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies

, , , &
Pages 528-574 | Received 30 Jun 2023, Accepted 04 Nov 2023, Published online: 16 Nov 2023

References

  • Deming, T. J. Synthesis of Side-Chain Modified Polypeptides. Chem. Rev. 2016, 116, 786–808. DOI: 10.1021/acs.chemrev.5b00292.
  • Leigh, T.; Fernandez-Trillo, P. Helical Polymers for Biological and Medical Applications. Nat. Rev. Chem. 2020, 4, 291–310. DOI: 10.1038/s41570-020-0180-5.
  • Li, J.; Kataoka, K. Chemo-Physical Strategies to Advance the In Vivo Functionality of Targeted Nanomedicine: The Next Generation. J. Am. Chem. Soc. 2021, 143, 538–559. DOI: 10.1021/jacs.0c09029.
  • Varanko, A. K.; Su, J. C.; Chilkoti, A. Elastin-Like Polypeptides for Biomedical Applications. Annu. Rev. Biomed. Eng. 2020, 22, 343–369. DOI: 10.1146/annurev-bioeng-092419-061127.
  • Deng, C.; Zhang, Q.; Guo, J.; Zhao, X.; Zhong, Z. Robust and Smart Polypeptide-Based Nanomedicines for Targeted Tumor Therapy. Adv. Drug Deliv. Rev. 2020, 160, 199–211. DOI: 10.1016/j.addr.2020.10.019.
  • Rupp, R.; Rosenthal, S. L.; Stanberry, L. R. VivaGel (SPL7013 Gel): A Candidate Dendrimer--Microbicide for the Prevention of HIV and HSV Infection. International J. Nanomed. 2007, 2, 561–566.
  • Bonduelle, C.; Lecommandoux, S. Synthetic Glycopolypeptides as Biomimetic Analogues of Natural Glycoproteins. Biomacromolecules 2013, 14, 2973–2983. DOI: 10.1021/bm4008088.
  • Lu, H.; Wang, J.; Song, Z.; Yin, L.; Zhang, Y.; Tang, H.; Tu, C.; Lin, Y.; Cheng, J. Recent Advances in Amino Acid N-Carboxyanhydrides and Synthetic Polypeptides: Chemistry, Self-Assembly and Biological Applications. Chem. Commun. (Camb). 2014, 50, 139–155. DOI: 10.1039/c3cc46317f.
  • Liu, Y.; Li, D.; Ding, J. X.; Chen, X. S. Controlled Synthesis of Polypeptides. Chin. Chem. Lett. 2020, 31, 3001–3014. DOI: 10.1016/j.cclet.2020.04.029.
  • Shen, Y.; Fu, X.; Fu, W.; Li, Z. Biodegradable Stimuli-Responsive Polypeptide Materials Prepared by Ring Opening Polymerization. Chem. Soc. Rev. 2015, 44, 612–622. DOI: 10.1039/c4cs00271g.
  • Song, Z. Y.; Han, Z. Y.; Lv, S. X.; Chen, C. Y.; Chen, L.; Yin, L. C.; Cheng, J. J. Synthetic Polypeptides: From Polymer Design to Supramolecular Assembly and Biomedical Application. Chem. Soc. Rev. 2017, 46, 6570–6599. DOI: 10.1039/c7cs00460e.
  • Balu, R.; Dutta, N. K.; Dutta, A. K.; Choudhury, N. R. Resilin-Mimetics as a Smart Biomaterial Platform for Biomedical Applications. Nat. Commun. 2021, 12, 149. DOI: 10.1038/s41467-020-20375-x.
  • Liu, Y.; Xing, R.; Li, J.; Yan, X. Covalently Triggered Self-Assembly of Peptide-Based Nanodrugs for Cancer Theranostics. iScience 2023, 26, 105789. DOI: 10.1016/j.isci.2022.105789.
  • Kricheldorf, H. R. Polypeptides and 100 Years of Chemistry of Alpha-Amino Acid N-Carboxyanhydrides. Angew. Chem. Int. Ed. Engl. 2006, 45, 5752–5784. DOI: 10.1002/anie.200600693.
  • Lu, H.; Cheng, J. J. Hexamethyldisilazane-Mediated Controlled Polymerization of Alpha-Amino Acid N-Carboxyanhydrides. J. Am. Chem. Soc. 2007, 129, 14114–14115. DOI: 10.1021/ja074961q.
  • Sun, H.; Marelli, B. Polypeptide Templating for Designer Hierarchical Materials. Nat. Commun. 2020, 11, 351. DOI: 10.1038/s41467-019-14257-0.
  • Avellaneda, M. J.; Franke, K. B.; Sunderlikova, V.; Bukau, B.; Mogk, A.; Tans, S. J. Processive Extrusion of Polypeptide Loops by a Hsp100 Disaggregase. Nature 2020, 578, 317–320. DOI: 10.1038/s41586-020-1964-y.
  • Xiong, M. H.; Han, Z. Y.; Song, Z. Y.; Yu, J.; Ying, H. Z.; Yin, L. C.; Cheng, J. J. Bacteria-Assisted Activation of Antimicrobial Polypeptides by a Random-Coil to Helix Transition. Angew. Chem. Int. Ed. Engl. 2017, 56, 10826–10829. DOI: 10.1002/anie.201706071.
  • Lee, M. W.; Han, M.; Bossa, G. V.; Snell, C.; Song, Z. Y.; Tang, H. Y.; Yin, L. C.; Cheng, J. J.; May, S.; Luijten, E.; Wong, G. C. L. Interactions between Membranes and “Metaphilic” Polypeptide Architectures with Diverse Side-Chain Populations. ACS Nano. 2017, 11, 2858–2871. DOI: 10.1021/acsnano.6b07981.
  • Schellenberger, V.; Wang, C. W.; Geething, N. C.; Spink, B. J.; Campbell, A.; To, W.; Scholle, M. D.; Yin, Y.; Yao, Y.; Bogin, O.; et al. A Recombinant Polypeptide Extends the in Vivo Half-Life of Peptides and Proteins in a Tunable Manner. Nat. Biotechnol. 2009, 27, 1186–1190. DOI: 10.1038/nbt.1588.
  • Wu, Y. M.; Xia, G. X.; Zhang, W. W.; Chen, K.; Bi, Y. F.; Liu, S. Q.; Zhang, W. J.; Liu, R. H. Structural Design and Antimicrobial Properties of Polypeptides and Saccharide-Polypeptide Conjugates. J. Mater. Chem. B 2020, 8, 9173–9196. DOI: 10.1039/d0tb01916j.
  • Saha, S.; Banskota, S.; Roberts, S.; Kirmani, N.; Chilkoti, A. Engineering the Architecture of Elastin‐Like Polypeptides: From Unimers to Hierarchical Self‐Assembly. Adv. Ther. 2020, 3, 1900164.
  • Song, Z. Y.; Fu, H. L.; Wang, J.; Hui, J. S.; Xue, T. R.; Pacheco, L. A.; Yan, H. Y.; Baumgartner, R.; Wang, Z. Y.; Xia, Y. C.; et al. Synthesis of Polypeptides via Bioinspired Polymerization of in Situ Purified N-Carboxyanhydrides. Proc. Natl. Acad. Sci. U S A 2019, 116, 10658–10663. DOI: 10.1073/pnas.1901442116.
  • Foden, C. S.; Islam, S.; Fernandez-Garcia, C.; Maugeri, L.; Sheppard, T. D.; Powner, M. W. Prebiotic Synthesis of Cysteine Peptides That Catalyze Peptide Ligation in Neutral Water. Science 2020, 370, 865–869. DOI: 10.1126/science.abd5680.
  • Figueira, T. N.; Mendonca, D. A.; Gaspar, D.; Melo, M. N.; Moscona, A.; Porotto, M.; Castanho, M. A. R. B.; Veiga, A. S. Structure-Stability-Function Mechanistic Links in the anti-Measles Virus Action of Tocopherol-Derivatized Peptide Nanoparticles. ACS Nano. 2018, 12, 9855–9865. DOI: 10.1021/acsnano.8b01422.
  • Ilie, I. M.; Caflisch, A. Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates. Chem. Rev. 2019, 119, 6956–6993. DOI: 10.1021/acs.chemrev.8b00731.
  • Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N. J.-A.; Qiu, W.; Duan, W.; O'Brien-Simpson, N. M.; Qiao, G. G. Ring Opening Polymerization of α-Amino Acids: Advances in Synthesis, Architecture and Applications of Polypeptides and Their Hybrids. Chem. Soc. Rev. 2020, 49, 4737–4834., DOI: 10.1039/c9cs00738e.
  • Kim, M.-S.; Pinto, S. M.; Getnet, D.; Nirujogi, R. S.; Manda, S. S.; Chaerkady, R.; Madugundu, A. K.; Kelkar, D. S.; Isserlin, R.; Jain, S.; et al. A Draft Map of the Human Proteome. Nature 2014, 509, 575–581., DOI: 10.1038/nature13302.
  • Knauer, S.; Koch, N.; Uth, C.; Meusinger, R.; Avrutina, O.; Kolmar, H. Sustainable Peptide Synthesis Enabled by a Transient Protecting Group. Angew. Chem. Int. Ed. Engl. 2020, 59, 12984–12990. DOI: 10.1002/anie.202003676.
  • Zhou, M.; Xiao, X.; Cong, Z.; Wu, Y.; Zhang, W.; Ma, P.; Chen, S.; Zhang, H.; Zhang, D.; Zhang, D.; et al. Water-Insensitive Synthesis of Poly-β-Peptides with Defined Architecture. Angew. Chem. Int. Ed. Engl. 2020, 59, 7240–7244. DOI: 10.1002/anie.202001697.
  • Otake, Y.; Nakamura, H.; Fuse, S. Rapid and Mild Synthesis of Amino Acid N-Carboxy Anhydrides: Basic-to-Acidic Flash Switching in a Microflow Reactor. Angew. Chem. Int. Ed. Engl. 2018, 57, 11389–11393. DOI: 10.1002/anie.201803549.
  • Tian, Z. Y.; Zhang, Z.; Wang, S.; Lu, H. A Moisture-Tolerant Route to Unprotected α/β-Amino Acid N-Carboxyanhydrides and Facile Synthesis of Hyperbranched Polypeptides. Nat. Commun. 2021, 12, 5810. DOI: 10.1038/s41467-021-25689-y.
  • Baumgartner, R.; Fu, H. L.; Song, Z. Y.; Lin, Y.; Cheng, J. J. Cooperative Polymerization of α-Helices Induced by Macromolecular Architecture. Nat. Chem. 2017, 9, 614–622. DOI: 10.1038/nchem.2712.
  • Chen, C.; Fu, H.; Baumgartner, R.; Song, Z.; Lin, Y.; Cheng, J. Proximity-Induced Cooperative Polymerization in “Hinged” Helical Polypeptides. J. Am. Chem. Soc. 2019, 141, 8680–8683. DOI: 10.1021/jacs.9b02298.
  • Song, Z.; Tan, Z.; Cheng, J. Recent Advances and Future Perspectives of Synthetic Polypeptides from N -Carboxyanhydrides. Macromolecules 2019, 52, 8521–8539. DOI: 10.1021/acs.macromol.9b01450.
  • Wu, Y. M.; Zhang, D. F.; Ma, P. C.; Zhou, R. Y.; Hua, L.; Liu, R. H. Lithium Hexamethyldisilazide Initiated Superfast Ring Opening Polymerization of Alpha-Amino Acid N-Carboxyanhydrides. Nat. Commun. 2018, 9, 5297. DOI: 10.1038/s41467-018-07711-y.
  • Zhao, W.; Lv, Y. F.; Li, J.; Feng, Z. H.; Ni, Y. H.; Hadjichristidis, N. Fast and Selective Organocatalytic Ring-Opening Polymerization by Fluorinated Alcohol without a Cocatalyst. Nat. Commun. 2019, 10, 3590. DOI: 10.1038/s41467-019-11524-y.
  • Wu, Y.; Chen, K.; Wu, X.; Liu, L.; Zhang, W.; Ding, Y.; Liu, S.; Zhou, M.; Shao, N.; Ji, Z.; et al. Superfast and Water-Insensitive Polymerization on α-Amino Acid N-Carboxyanhydrides to Prepare Polypeptides Using Tetraalkylammonium Carboxylate as the Initiator. Angew. Chem. Int. Ed. Engl. 2021, 60, 26063–26071. DOI: 10.1002/anie.202103540.
  • Xia, Y.; Song, Z.; Tan, Z.; Xue, T.; Wei, S.; Zhu, L.; Yang, Y.; Fu, H.; Jiang, Y.; Lin, Y.; et al. Accelerated Polymerization of N-Carboxyanhydrides Catalyzed by Crown Ether. Nat. Commun. 2021, 12, 732. DOI: 10.1038/s41467-020-20724-w.
  • Zou, J.; Fan, J. W.; He, X.; Zhang, S. Y.; Wang, H.; Wooley, K. L. A Facile Glovebox-Free Strategy to Significantly Accelerate the Syntheses of Well-Defined Polypeptides by N-Carboxyanhydride (NCA) Ring Opening Polymerizations. Macromolecules 2013, 46, 4223–4226. DOI: 10.1021/ma4007939.
  • Pickel, D. L.; Politakos, N.; Avgeropoulos, A.; Messman, J. M. a Mechanistic Study of α-(Amino Acid)- N -Carboxyanhydride Polymerization: Comparing Initiation and Termination Events in High-Vacuum and Traditional Polymerization Techniques. Macromolecules 2009, 42, 7781–7788. DOI: 10.1021/ma901340y.
  • Hu, Y.; Tian, Z.-Y.; Xiong, W.; Wang, D.; Zhao, R.; Xie, Y.; Song, Y.-Q.; Zhu, J.; Lu, H. Water-Assisted and Protein-Initiated Fast and Controlled Ring-Opening Polymerization of Proline N-Carboxyanhydride. Natl. Sci. Rev. 2022, 9, nwac033.
  • Tan, Z.; Song, Z.; Xue, T.; Zheng, L.; Jiang, L.; Jiang, Y.; Fu, Z.; Nguyen, A.; Leal, C.; Cheng, J. Open-Air Synthesis of Oligo(Ethylene Glycol)-Functionalized Polypeptides from Non-Purified N-Carboxyanhydrides. Biomater. Sci. 2021, 9, 4120–4126., DOI: 10.1039/d1bm00223f.
  • Otake, Y.; Nakamura, H.; Fuse, S. Rapid and Mild Synthesis of Amino Acid N ‐Carboxy Anhydrides: Basic‐to‐Acidic Flash Switching in a Microflow Reactor. Angew. Chem. Int. Ed. 2018, 57, 11389–11393. DOI: 10.1002/anie.201803549.
  • Vrijsen, J. H.; Mazo, A. R.; Junkers, T.; Qiao, G. G. Accelerated Polypeptide Synthesis via N ‐Carboxyanhydride Ring Opening Polymerization in Continuous Flow. Macromol. Rapid Commun. 2020, 41, 2000071. DOI: 10.1002/marc.202000071.
  • Shirbin, S. J.; Insua, I.; Holden, J. A.; Lenzo, J. C.; Reynolds, E. C.; O’Brien-Simpson, N. M.; Qiao, G. G. Architectural Effects of Star-Shaped “Structurally Nanoengineered Antimicrobial Peptide Polymers” (SNAPPs) on their Biological Activity. Adv. Healthc. Mater. 2018, 7, 1800627.
  • Lv, S. X.; Kim, H.; Song, Z. Y.; Feng, L.; Yang, Y. F.; Baumgartner, R.; Tseng, K. Y.; Dillon, S. J.; Leal, C.; Yin, L. C.; Cheng, J. J. Unimolecular Polypeptide Micelles via Ultrafast Polymerization of N-Carboxyanhydrides. J. Am. Chem. Soc. 2020, 142, 8570–8574. DOI: 10.1021/jacs.0c01173.
  • (a) Li, P.; Dong, C. M. Phototriggered Ring-Opening Polymerization of a Photocaged l -Lysine N -Carboxyanhydride to Synthesize Hyperbranched and Linear Polypeptides. ACS Macro Lett. 2017, 6, 292–297. DOI: 10.1021/acsmacrolett.7b00167. (b) Li, P.; Song, Y. Y.; Dong, C. M. Hyperbranched Polypeptides Synthesized from Phototriggered ROP of a Photocaged Nε-[1-(2-Nitrophenyl) Ethoxycarbonyl]-l-Lysine-n-Carboxyanhydride: Microstructures and Effects of Irradiation Intensity and Nitrogen Flow Rate. Polym. Chem. 2018, 9, 3974–3986.
  • Scholl, M.; Nguyen, T. Q.; Bruchmann, B.; Klok, H. A. the Thermal Polymerization of Amino Acids Revisited; Synthesis and Structural Characterization of Hyperbranched Polymers from L ‐Lysine. J. Polym. Sci. A Polym. Chem. 2007, 45, 5494–5508. DOI: 10.1002/pola.22295.
  • Jiang, J.; Zhang, X.; Fan, Z.; Du, J. Ring-Opening Polymerization of N-Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer Vesicles. ACS Macro Lett. 2019, 8, 1216–1221. DOI: 10.1021/acsmacrolett.9b00606.
  • Jacobs, J.; Pavlovic, D.; Prydderch, H.; Moradi, M. A.; Ibarboure, E.; Heuts, J. P. A.; Lecommandoux, S.; Heise, A. Polypeptide Nanoparticles Obtained from Emulsion Polymerization of Amino Acid N-Carboxyanhydrides. J. Am. Chem. Soc. 2019, 141, 12522–12526. DOI: 10.1021/jacs.9b06750.
  • Grazon, C.; Salas-Ambrosio, P.; Ibarboure, E.; Buol, A.; Garanger, E.; Grinstaff, M. W.; Lecommandoux, S.; Bonduelle, C. Aqueous Ring-Opening Polymerization-Induced Self-Assembly (ROPISA) of N-Carboxyanhydrides. Angew. Chem. Int. Ed. Engl. 2020, 59, 622–626. DOI: 10.1002/anie.201912028.
  • Zheng, Y.; Liu, Y.; Wu, Z.; Peng, C.; Wang, Z.; Yan, J.; Yan, Y.; Li, Z.; Liu, C.; Xue, J.; et al. Photoallosteric Polymersomes toward On-Demand Drug Delivery and Multimodal Cancer Immunotherapy. Adv. Mater. 2023, 35, 2210986.
  • Song, Y.; Ding, Y.; Dong, C. M. Stimuli-Responsive Polypeptide Nanoassemblies: Recent Progress and Applications in Cancer Nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022, 14, e1742. DOI: 10.1002/wnan.1742.
  • Li, L.; Chen, G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J. Am. Chem. Soc. 2022, 144, 16232–16251. DOI: 10.1021/jacs.2c04418.
  • Garcia-Martin, R.; Wang, G. X.; Brandao, B. B.; Zanotto, T. M.; Shah, S.; Patel, S. K.; Schilling, B.; Kahn, C. R. MicroRNA Sequence Codes for Small Extracellular Vesicle Release and Cellular Retention. Nature 2022, 601, 446–451. DOI: 10.1038/s41586-021-04234-3.
  • Mateus, J.; Dan, J. M.; Zhang, Z. L.; Moderbacher, C. R.; Lammers, M.; Goodwin, B.; Sette, A.; Crotty, S.; Weiskopf, D. Low-Dose mRNA-1273 COVID-19 Vaccine Generates Durable Memory Enhanced by Cross-Reactive T Cells. Science 2021, 374, eabj9853. DOI: 10.1126/science.abj9853.
  • Cheng, Q.; Wei, T.; Farbiak, L.; Johnson, L. T.; Dilliard, S. A.; Siegwart, D. J. Selective Organ Targeting (SORT) Nanoparticles for Tissue-Specific mRNA Delivery and CRISPR-Cas Gene Editing. Nat. Nanotechnol. 2020, 15, 313–320. DOI: 10.1038/s41565-020-0669-6.
  • Gillmore, J. D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M. L.; Seitzer, J.; O'Connell, D.; Walsh, K. R.; Wood, K.; et al. CRISPR-Cas9 in Vivo Gene Editing for Transthyretin Amyloidosis. N Engl. J. Med. 2021, 385, 493–502., DOI: 10.1056/NEJMoa2107454.
  • Casanova, J. L.; Abel, L. Lethal Infectious Diseases as Inborn Errors of Immunity: Toward a Synthesis of the Germ and Genetic Theories. Annu. Rev. Pathol. 2021, 16, 23–50. DOI: 10.1146/annurev-pathol-031920-101429.
  • Polack, F. P.; Thomas, S. J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J. L.; Pérez Marc, G.; Moreira, E. D.; Zerbini, C.; et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl. J. Med. 2020, 383, 2603–2615. DOI: 10.1056/NEJMoa2034577.
  • Baden, L. R.; El Sahly, H. M.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S. A.; Rouphael, N.; Creech, C. B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl. J. Med. 2021, 384, 403–416. DOI: 10.1056/NEJMoa2035389.
  • Pilishvili, T.; Gierke, R.; Fleming-Dutra, K. E.; Farrar, J. L.; Mohr, N. M.; Talan, D. A.; Krishnadasan, A.; Harland, K. K.; Smithline, H. A.; Hou, P. C.; et al. Effectiveness of mRNA Covid-19 Vaccine among U.S. Health Care Personnel. N Engl. J. Med. 2021, 385, e90. DOI: 10.1056/NEJMoa2106599.
  • Boettler, T.; Csernalabics, B.; Salié, H.; Luxenburger, H.; Wischer, L.; Salimi Alizei, E.; Zoldan, K.; Krimmel, L.; Bronsert, P.; Schwabenland, M.; et al. SARS-CoV-2 Vaccination Can Elicit a CD8 T-Cell Dominant Hepatitis. J. Hepatol. 2022, 77, 653–659. DOI: 10.1016/j.jhep.2022.03.040.
  • Wang, J. Y.; Pausch, P.; Doudna, J. A. Structural Biology of CRISPR-Cas Immunity and Genome Editing Enzymes. Nat. Rev. Microbiol. 2022, 20, 641–656. DOI: 10.1038/s41579-022-00739-4.
  • Nguyen, G. N.; Everett, J. K.; Kafle, S.; Roche, A. M.; Raymond, H. E.; Leiby, J.; Wood, C.; Assenmacher, C. A.; Merricks, E. P.; Long, C. T.; et al. A Long-Term Study of AAV Gene Therapy in Dogs with Hemophilia a Identifies Clonal Expansions of Transduced Liver Cells. Nat. Biotechnol. 2021, 39, 47–55. DOI: 10.1038/s41587-020-0741-7.
  • Grieger, J. C.; Samulski, R. J. Packaging Capacity of Adeno-Associated Virus Serotypes: Impact of Larger Genomes on Infectivity and Postentry Steps. J. Virol. 2005, 79, 9933–9944. DOI: 10.1128/JVI.79.15.9933-9944.2005.
  • Jiang, C.; Mei, M.; Li, B.; Zhu, X. R.; Zu, W. H.; Tian, Y. J.; Wang, Q. N.; Guo, Y.; Dong, Y. Z.; Tan, X. A Non-Viral CRISPR/Cas9 Delivery System for Therapeutically Targeting HBV DNA and pcsk9 In Vivo. Cell Res. 2017, 27, 440–443. DOI: 10.1038/cr.2017.16.
  • Wei, T.; Cheng, Q.; Min, Y. L.; Olson, E. N.; Siegwart, D. J. Systemic Nanoparticle Delivery of CRISPR-Cas9 Ribonucleoproteins for Effective Tissue Specific Genome Editing. Nat. Commun. 2020, 11, 3232. DOI: 10.1038/s41467-020-17029-3.
  • Hendel, A.; Bak, R. O.; Clark, J. T.; Kennedy, A. B.; Ryan, D. E.; Roy, S.; Steinfeld, I.; Lunstad, B. D.; Kaiser, R. J.; Wilkens, A. B.; et al. Chemically Modified Guide RNAs Enhance CRISPR-Cas Genome Editing in Human Primary Cells. Nat. Biotechnol. 2015, 33, 985–989. DOI: 10.1038/nbt.3290.
  • Abbasi, S.; Uchida, S.; Toh, K.; Tockary, T. A.; Dirisala, A.; Hayashi, K.; Fukushima, S.; Kataoka, K. Co-Encapsulation of Cas9 mRNA and Guide RNA in Polyplex Micelles Enables Genome Editing in Mouse Brain. J. Control. Release 2021, 332, 260–268. DOI: 10.1016/j.jconrel.2021.02.026.
  • Lostale-Seijo, I.; Louzao, I.; Juanes, M.; Montenegro, J. Peptide/Cas9 Nanostructures for Ribonucleoprotein Cell Membrane Transport and Gene Edition. Chem. Sci. 2017, 8, 7923–7931. DOI: 10.1039/c7sc03918b.
  • Shen, Y. F.; Cohen, J. L.; Nicoloro, S. M.; Kelly, M.; Yenilmez, B.; Henriques, F.; Tsagkaraki, E.; Edwards, Y. J. K.; Hu, X. D.; Friedline, R. H.; et al. CRISPR-Delivery Particles Targeting Nuclear Receptor-Interacting Protein 1 (Nrip1) in Adipose Cells to Enhance Energy Expenditure. J. Biol. Chem. 2018, 293, 17291–17305. DOI: 10.1074/jbc.RA118.004554.
  • Yin, J.; Wang, Q.; Hou, S.; Bao, L. C.; Yao, W. B.; Gao, X. D. Potent Protein Delivery into Mammalian Cells via a Supercharged Polypeptide. J. Am. Chem. Soc. 2018, 140, 17234–17240. DOI: 10.1021/jacs.8b10299.
  • Wang, H.-X.; Song, Z.; Lao, Y.-H.; Xu, X.; Gong, J.; Cheng, D.; Chakraborty, S.; Park, J. S.; Li, M.; Huang, D.; et al. Nonviral Gene Editing via CRISPR/Cas9 Delivery by Membrane-Disruptive and Endosomolytic Helical Polypeptide. Proc. Natl. Acad. Sci. U S A 2018, 115, 4903–4908., DOI: 10.1073/pnas.1712963115.
  • Chen, G. J.; Ma, B.; Wang, Y. Y.; Gong, S. Q. A Universal GSH-Responsive Nanoplatform for the Delivery of DNA, mRNA, and Cas9/sgRNA Ribonucleoprotein. ACS Appl. Mater. Interfaces. 2018, 10, 18515–18523. DOI: 10.1021/acsami.8b03496.
  • Li, J.; Lai, S. J.; Gao, G. F.; Shi, W. F. The Emergence, Genomic Diversity and Global Spread of SARS-CoV-2. Nature 2021, 600, 408–418. DOI: 10.1038/s41586-021-04188-6.
  • Abbott, T. R.; Dhamdhere, G.; Liu, Y. X.; Lin, X. Q.; Goudy, L.; Zeng, L. P.; Chemparathy, A.; Chmura, S.; Heaton, N. S.; Debs, R.; et al. Development of CRISPR as an Antiviral Strategy to Combat SARS-CoV-2 and Influenza. Cell 2020, 181, 865–876.e12. DOI: 10.1016/j.cell.2020.04.020.
  • Fareh, M.; Zhao, W.; Hu, W. X.; Casan, J. M. L.; Kumar, A.; Symons, J.; Zerbato, J. M.; Fong, D.; Voskoboinik, I.; Ekert, P. G.; et al. Reprogrammed CRISPR-Cas13b Suppresses SARS-CoV-2 Replication and Circumvents Its Mutational Escape through Mismatch Tolerance. Nat. Commun. 2021, 12, 4270. DOI: 10.1038/s41467-021-24577-9.
  • Lorenzo-Redondo, R.; Fryer, H. R.; Bedford, T.; Kim, E. Y.; Archer, J.; Pond, S. L. K.; Chung, Y. S.; Penugonda, S.; Chipman, J. G.; Fletcher, C. V.; et al. Persistent HIV-1 Replication Maintains the Tissue Reservoir during Therapy. Nature 2016, 530, 51–56. DOI: 10.1038/nature16933.
  • Yin, C. R.; Zhang, T.; Qu, X. Y.; Zhang, Y. G.; Putatunda, R.; Xiao, X.; Li, F.; Xiao, W. D.; Zhao, H. Q.; Dai, S.; et al. In Vivo Excision of HIV-1 Provirus by saCas9 and Multiplex Single-Guide RNAs in Animal Models. Mol. Ther. 2017, 25, 1168–1186. DOI: 10.1016/j.ymthe.2017.03.012.
  • Mancuso, P.; Chen, C.; Kaminski, R.; Gordon, J.; Liao, S. R.; Robinson, J. A.; Smith, M. D.; Liu, H.; Sariyer, I. K.; Sariyer, R.; et al. CRISPR Based Editing of SIV Proviral DNA in ART Treated Non-Human Primates. Nat. Commun. 2020, 11, 6065. DOI: 10.1038/s41467-020-19821-7.
  • Ho, Y. C.; Shan, L.; Hosmane, N. N.; Wang, J.; Laskey, S. B.; Rosenbloom, D. I. S.; Lai, J.; Blankson, J. N.; Siliciano, J. D.; Siliciano, R. F. Replication-Competent Noninduced Proviruses in the Latent Reservoir Increase Barrier to HIV-1 Cure. Cell 2013, 155, 540–551. DOI: 10.1016/j.cell.2013.09.020.
  • Limsirichai, P.; Gaj, T.; Schaffer, D. V. CRISPR-Mediated Activation of Latent HIV-1 Expression. Mol. Ther. 2016, 24, 499–507. DOI: 10.1038/mt.2015.213.
  • Saayman, S. M.; Lazar, D. C.; Scott, T. A.; Hart, J. R.; Takahashi, M.; Burnett, J. C.; Planelles, V.; Morris, K. V.; Weinberg, M. S. Potent and Targeted Activation of Latent HIV-1 Using the CRISPR/dCas9 Activator Complex. Mol. Ther. 2016, 24, 488–498. DOI: 10.1038/mt.2015.202.
  • Knipping, F.; Newby, G. A.; Eide, C. R.; McElroy, A. N.; Nielsen, S. C.; Smith, K.; Fang, Y. X.; Cornu, T. I.; Costa, C.; Gutierrez-Guerrero, A.; et al. Disruption of HIV-1 co-Receptors CCR5 and CXCR4 in Primary Human T Cells and Hematopoietic Stem and Progenitor Cells Using Base Editing. Mol. Ther. 2022, 30, 130–144. DOI: 10.1016/j.ymthe.2021.10.026.
  • Foss, D. V.; Muldoon, J. J.; Nguyen, D. N.; Carr, D.; Sahu, S. U.; Hunsinger, J. M.; Wyman, S. K.; Krishnappa, N.; Mendonsa, R.; Schanzer, E. V.; et al. Peptide-Mediated Delivery of CRISPR Enzymes for the Efficient Editing of Primary Human Lymphocytes. Nat. Biomed. Eng. 2023, 7, 647–660. DOI: 10.1038/s41551-023-01032-2.
  • Trepo, C.; Chan, H. L. Y.; Lok, A. Hepatitis B Virus Infection. Lancet 2014, 384, 2053–2063. DOI: 10.1016/S0140-6736(14)60220-8.
  • Yuen, M. F.; Chen, D. S.; Dusheiko, G. M.; Janssen, H. L. A.; Lau, D. T. Y.; Locarnini, S. A.; Peters, M. G.; Lai, C. L. Hepatitis B Virus Infection. Nat. Rev. Dis. Primers. 2018, 4, 18035. DOI: 10.1038/nrdp.2018.35.
  • Fanning, G. C.; Zoulim, F.; Hou, J. L.; Bertoletti, A. Therapeutic Strategies for Hepatitis B Virus Infection: Towards a Cure. Nat. Rev. Drug Discov. 2019, 18, 827–844. DOI: 10.1038/s41573-019-0037-0.
  • Nassal, M. HBV cccDNA: Viral Persistence Reservoir and Key Obstacle for a Cure of Chronic Hepatitis B. Gut. 2015, 64, 1972–1984. DOI: 10.1136/gutjnl-2015-309809.
  • Iannacone, M.; Guidotti, L. G. Immunobiology and Pathogenesis of Hepatitis B Virus Infection. Nat. Rev. Immunol. 2022, 22, 19–32. DOI: 10.1038/s41577-021-00549-4.
  • Rehermann, B.; Ferrari, C.; Pasquinelli, C.; Chisari, F. V. The Hepatitis B Virus Persists for Decades after Patients’ Recovery from Acute Viral Hepatitis despite Active Maintenance of a Cytotoxic T-Lymphocyte Response. Nat. Med. 1996, 2, 1104–1108. DOI: 10.1038/nm1096-1104.
  • Park, J. H.; Iwamoto, M.; Yun, J. H.; Uchikubo-Kamo, T.; Son, D.; Jin, Z. Y.; Yoshida, H.; Ohki, M.; Ishimoto, N.; Mizutani, K.; et al. Structural Insights into the HBV Receptor and Bile Acid Transporter NTCP. Nature 2022, 606, 1027–1031. DOI: 10.1038/s41586-022-04857-0.
  • Tang, X. F.; Wang, Z.; Zhang, Y.; Mu, W.; Han, X. J. Non-Viral Nanocarriers for CRISPR-Cas9 Gene Editing System Delivery. Chem. Eng. J. 2022, 435, 135116. DOI: 10.1016/j.cej.2022.135116.
  • Chen, M. S.; Jensen, S. P.; Hill, M. R.; Moore, G.; He, Z. L.; Sumerlin, B. S. Synthesis of Amphiphilic Polysuccinimide Star Copolymers for Responsive Delivery in Plants. Chem Commun (Camb.) 2015, 51, 9694–9697. DOI: 10.1039/c5cc02726h.
  • Zhang, Y.; Zhou, Z. P.; Chen, M. S. The Length of Hydrophobic Chain in Amphiphilic Polypeptides Regulates the Efficiency of Gene Delivery. Polymers (Basel) 2018, 10, 379. DOI: 10.3390/polym10040379.
  • Blanchard, E. L.; Vanover, D.; Bawage, S. S.; Tiwari, P. M.; Rotolo, L.; Beyersdorf, J.; Peck, H. E.; Bruno, N. C.; Hincapie, R.; Michel, F.; et al. Treatment of Influenza and SARS-CoV-2 Infections via mRNA-Encoded Cas13a in Rodents. Nat. Biotechnol. 2021, 39, 717–726. DOI: 10.1038/s41587-021-00822-w.
  • Wang, L.; Zhou, J. H.; Wang, Q. X.; Wang, Y. F.; Kang, C. S. Rapid Design and Development of CRISPR-Cas13a Targeting SARS-CoV-2 Spike Protein. Theranostics 2021, 11, 649–664. DOI: 10.7150/thno.51479.
  • Dash, P. K.; Kaminski, R.; Bella, R.; Su, H.; Mathews, S.; Ahooyi, T. M.; Chen, C.; Mancuso, P.; Sariyer, R.; Ferrante, P.; et al. Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nat. Commun. 2019, 10, 2753. DOI: 10.1038/s41467-019-10366-y.
  • Herskovitz, J.; Hasan, M.; Patel, M.; Blomberg, W. R.; Cohen, J. D.; Machhi, J.; Shahjin, F.; Mosley, R. L.; McMillan, J.; Kevadiya, B. D.; Gendelman, H. E. CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination. Ebiomedicine 2021, 73, 103678. DOI: 10.1016/j.ebiom.2021.103678.
  • Campbell, L. A.; Coke, L. M.; Richie, C. T.; Fortuno, L. V.; Park, A. Y.; Harvey, B. K. Gesicle-Mediated Delivery of CRISPR/Cas9 Ribonucleoprotein Complex for Inactivating the HIV Provirus. Mol. Ther. 2019, 27, 151–163. DOI: 10.1016/j.ymthe.2018.10.002.
  • Hale, M.; Mesojednik, T.; Ibarra, G. S. R.; Sahni, J.; Bernard, A.; Sommer, K.; Scharenberg, A. M.; Rawlings, D. J.; Wagner, T. A. Engineering HIV-Resistant, anti-HIV Chimeric Antigen Receptor T Cells. Mol. Ther. 2017, 25, 570–579. DOI: 10.1016/j.ymthe.2016.12.023.
  • Xu, L.; Wang, J.; Liu, Y. L.; Xie, L. F.; Su, B.; Mou, D. L.; Wang, L. T.; Liu, T. T.; Wang, X. B.; Zhang, B.; et al. CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukemia. N Engl. J. Med. 2019, 381, 1240–1247. DOI: 10.1056/NEJMoa1817426.
  • Suzuki, Y.; Onuma, H.; Sato, R.; Sato, Y.; Hashiba, A.; Maeki, M.; Tokeshi, M.; Kayesh, M. E. H.; Kohara, M.; Tsukiyama-Kohara, K.; Harashima, H. Lipid Nanoparticles Loaded with Ribonucleoprotein-Oligonucleotide Complexes Synthesized Using a Microfluidic Device Exhibit Robust Genome Editing and Hepatitis B Virus Inhibition. J. Control. Release 2021, 330, 61–71. DOI: 10.1016/j.jconrel.2020.12.013.
  • Wang, D.; Chen, L.; Li, C. B.; Long, Q. X.; Yang, Q.; Huang, A. L.; Tang, H. CRISPR/Cas9 Delivery by NIR-Responsive Biomimetic Nanoparticles for Targeted HBV Therapy. J. Nanobiotechnol. 2022, 20, 27. DOI: 10.1186/s12951-021-01233-4.
  • Seeger, C.; Sohn, J. A. Targeting Hepatitis B Virus with CRISPR/Cas9. Mol. Ther. Nucleic Acids. 2014, 3, e216. DOI: 10.1038/mtna.2014.68.
  • Stone, D.; Long, K. R.; Loprieno, M. A.; Feelixge, H. S. D.; Kenkel, E. J.; Liley, R. M.; Rapp, S.; Roychoudhury, P.; Nguyen, T.; Stensland, L.; et al. CRISPR-Cas9 Gene Editing of Hepatitis B Virus in Chronically Infected Humanized Mice. Mol. Ther. Methods Clin. Dev. 2021, 20, 258–275. DOI: 10.1016/j.omtm.2020.11.014.
  • Xiao, Y. F.; Tang, Z. M.; Huang, X. G.; Chen, W.; Zhou, J.; Liu, H. J.; Liu, C.; Kong, N.; Tao, W. Emerging mRNA Technologies: Delivery Strategies and Biomedical Applications. Chem. Soc. Rev. 2022, 51, 3828–3845. DOI: 10.1039/d1cs00617g.
  • Li, H.; Wen, P.; Itanze, D. S.; Kim, M. W.; Adhikari, S.; Lu, C.; Jiang, L.; Qiu, Y.; Geyer, S. M. Retraction: Phosphorus-Rich Colloidal Cobalt Diphosphide (CoP2) Nanocrystals for Electrochemical and Photoelectrochemical Hydrogen Evolution. Adv. Mater. 2023, 35, e2302628.,
  • Zhang, Z. B.; Zhang, Y.; Xia, S. Y.; Kong, Q.; Li, S. Y.; Liu, X.; Junqueira, C.; Meza-Sosa, K. F.; Mok, T. M. Y.; Ansara, J.; et al. Gasdermin E Suppresses Tumour Growth by Activating anti-Tumour Immunity. Nature 2020, 579, 415–420. DOI: 10.1038/s41586-020-2071-9.
  • Canon, J.; Rex, K.; Saiki, A. Y.; Mohr, C.; Cooke, K.; Bagal, D.; Gaida, K.; Holt, T.; Knutson, C. G.; Koppada, N.; et al. The Clinical KRAS(G12C) Inhibitor AMG 510 Drives anti-Tumour Immunity. Nature 2019, 575, 217–223. DOI: 10.1038/s41586-019-1694-1.
  • Jiang, Y.; Sun, A.; Zhao, Y.; Ying, W.; Sun, H.; Yang, X.; Xing, B.; Sun, W.; Ren, L.; Hu, B.; et al. Proteomics Identifies New Therapeutic Targets of Early-Stage Hepatocellular Carcinoma. Nature 2019, 567, 257–261., DOI: 10.1038/s41586-019-0987-8.
  • Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.-P.; Simon, P.; Löwer, M.; Bukur, V.; Tadmor, A. D.; Luxemburger, U.; Schrörs, B.; et al. Personalized RNA Mutanome Vaccines Mobilize Poly-Specific Therapeutic Immunity against Cancer. Nature 2017, 547, 222–226. DOI: 10.1038/nature23003.
  • Boehnke, N.; Correa, S.; Hao, L. L.; Wang, W. D.; Straehla, J. P.; Bhatia, S. N.; Hammond, P. T. Theranostic Layer-by-Layer Nanoparticles for Simultaneous Tumor Detection and Gene Silencing. Angew. Chem. Int. Ed. Engl. 2020, 59, 2776–2783. DOI: 10.1002/anie.201911762.
  • Mullard, A. FDA Approval for Biogen’s Aducanumab Sparks Alzheimer Disease Firestorm. Nat. Rev. Drug Discov. 2021, 20, 496–496. DOI: 10.1038/d41573-021-00099-3.
  • He, L.; Dar, A. C. Targeting Drug-Resistant Mutations in ALK. Nat. Cancer 2022, 3, 659–661. DOI: 10.1038/s43018-022-00390-1.
  • Vasan, N.; Baselga, J.; Hyman, D. M. A View on Drug Resistance in Cancer. Nature 2019, 575, 299–309. DOI: 10.1038/s41586-019-1730-1.
  • Cooper, A. J.; Sequist, L. V.; Lin, J. J. Third-Generation EGFR and ALK Inhibitors: Mechanisms of Resistance and Management. Nat. Rev. Clin. Oncol. 2022, 19, 499–514. DOI: 10.1038/s41571-022-00639-9.
  • Sebastian, M.; Schröder, A.; Scheel, B.; Hong, H. S.; Muth, A.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; et al. Cancer Immunol. Cancer Immunol. Immunother. 2019, 68, 799–812. DOI: 10.1007/s00262-019-02315-x.
  • Patel, A. K.; Kaczmarek, J. C.; Bose, S.; Kauffman, K. J.; Mir, F.; Heartlein, M. W.; DeRosa, F.; Langer, R.; Anderson, D. G. Inhaled Nanoformulated mRNA Polyplexes for Protein Production in Lung Epithelium. Adv. Mater. 2019, 31, e1805116.
  • Qiu, Y. S.; Man, R. C. H.; Liao, Q. Y.; Kung, K. L. K.; Chow, M. Y. T.; Lam, J. K. W. Effective mRNA Pulmonary Delivery by Dry Powder Formulation of PEGylated Synthetic KL4 Peptide. J. Control. Release 2019, 314, 102–115. DOI: 10.1016/j.jconrel.2019.10.026.
  • Lorentzen, C. L.; Haanen, J. B.; Met, Ö.; Svane, I. M. Clinical Advances and Ongoing Trials on mRNA Vaccines for Cancer Treatment. Lancet Oncol. 2022, 450–458.
  • Llovet, J. M.; Kelley, R. K.; Villanueva, A.; Singal, A. G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R. S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers. 2021, 7, 6. DOI: 10.1038/s41572-020-00240-3.
  • Yang, J. D.; Hainaut, P.; Gores, G. J.; Amadou, A.; Plymoth, A.; Roberts, L. R. A Global View of Hepatocellular Carcinoma: Trends, Risk, Prevention and Management. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 589–604. DOI: 10.1038/s41575-019-0186-y.
  • Llovet, J. M.; Castet, F.; Heikenwalder, M.; Maini, M. K.; Mazzaferro, V.; Pinato, D. J.; Pikarsky, E.; Zhu, A. X.; Finn, R. S. Immunotherapies for Hepatocellular Carcinoma. Nat. Rev. Clin. Oncol. 2022, 19, 151–172. DOI: 10.1038/s41571-021-00573-2.
  • Yarchoan, M.; Hopkins, A.; Jaffee, E. M.; Engl, N. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N Engl. J. Med. 2017, 377, 2500–2501. DOI: 10.1056/NEJMc1713444.
  • Yamamoto, T. N.; Kishton, R. J.; Restifo, N. P. Developing Neoantigen-Targeted T Cell-Based Treatments for Solid Tumors. Nat. Med. 2019, 25, 1488–1499. DOI: 10.1038/s41591-019-0596-y.
  • Xiao, Y.; Chen, J.; Zhou, H.; Zeng, X.; Ruan, Z.; Pu, Z.; Jiang, X.; Matsui, A.; Zhu, L.; Amoozgar, Z.; et al. Combining p53 mRNA Nanotherapy with Immune Checkpoint Blockade Reprograms the Immune Microenvironment for Effective Cancer Therapy. Nat. Commun. 2022, 13, 758. DOI: 10.1038/s41467-022-28279-8.
  • Lai, I.; Swaminathan, S.; Baylot, V.; Mosley, A.; Dhanasekaran, R.; Gabay, M.; Felsher, D. W. Lipid Nanoparticles that Deliver IL-12 Messenger RNA Suppress Tumorigenesis in MYC Oncogene-Driven Hepatocellular Carcinoma. J. Immunother. Cancer 2018, 6, 125.
  • Varshney, A.; Panda, J. J.; Singh, A. K.; Yadav, N.; Bihari, C.; Biswas, S.; Sarin, S. K.; Chauhan, V. S. Targeted Delivery of microRNA-199a-3p Using Self-Assembled Dipeptide Nanoparticles Efficiently Reduces Hepatocellular Carcinoma in Mice. Hepatology 2018, 67, 1392–1407. DOI: 10.1002/hep.29643.
  • Xia, Y.; Tang, G. Y.; Chen, Y.; Wang, C. B.; Guo, M.; Xu, T. T.; Zhao, M. Q.; Zhou, Y. J. Tumor-Targeted Delivery of siRNA to Silence Sox2 Gene Expression Enhances Therapeutic Response in Hepatocellular Carcinoma. Bioact. Mater. 2021, 6, 1330–1340. DOI: 10.1016/j.bioactmat.2020.10.019.
  • Roy, B.; Ghose, S.; Biswas, S. Therapeutic Strategies for miRNA Delivery to Reduce Hepatocellular Carcinoma. Semin. Cell Dev. Biol. 2022, 124, 134–144. DOI: 10.1016/j.semcdb.2021.04.006.
  • Eisenstein, M. Immunotherapy Offers a Promising Bet against Brain Cancer. Nature 2018, 561, S42–S44. DOI: 10.1038/d41586-018-06705-6.
  • Sampson, J. H.; Gunn, M. D.; Fecci, P. E.; Ashley, D. M. Brain Immunology and Immunotherapy in Brain Tumours. Nat. Rev. Cancer 2020, 20, 12–25. DOI: 10.1038/s41568-019-0224-7.
  • Liu, S. H.; Liu, J.; Li, H. S.; Mao, K. R.; Wang, H. R.; Meng, X. D.; Wang, J. L.; Wu, C. X.; Chen, H. M.; Wang, X.; et al. An Optimized Ionizable Cationic Lipid for Brain Tumor-Targeted siRNA Delivery and Glioblastoma Immunotherapy. Biomaterials 2022, 287, 121645. DOI: 10.1016/j.biomaterials.2022.121645.
  • Fabbri, L.; Chakraborty, A.; Robert, C.; Vagner, S. The Plasticity of mRNA Translation during Cancer Progression and Therapy Resistance. Nat. Rev. Cancer 2021, 21, 558–577. DOI: 10.1038/s41568-021-00380-y.
  • Li, J. H.; He, Y. P.; Wang, W. D.; Wu, C.; Hong, C.; Hammond, P. T. Polyamine-Mediated Stoichiometric Assembly of Ribonucleoproteins for Enhanced mRNA Delivery. Angew. Chem. Int. Ed. Engl. 2017, 56, 13709–13712. DOI: 10.1002/anie.201707466.
  • Peng, H.; Guo, X. R.; He, J. J.; Duan, C.; Yang, M. H.; Zhang, X. H.; Zhang, L.; Fu, R.; Wang, B.; Wang, D. K.; et al. Intracranial Delivery of Synthetic mRNA to Suppress Glioblastoma. Mol. Ther. Oncolytics. 2022, 24, 160–170. DOI: 10.1016/j.omto.2021.12.010.
  • Oller-Salvia, B.; Sanchez-Navarro, M.; Giralt, E.; Teixido, M. Blood-Brain Barrier Shuttle Peptides: An Emerging Paradigm for Brain Delivery. Chem. Soc. Rev. 2016, 45, 4690–4707. DOI: 10.1039/c6cs00076b.
  • Wang, T. R.; Meng, Z.; Kang, Z. Y.; Ding, G. H.; Zhao, B. Q.; Han, Z. B.; Zheng, Z. B.; Wang, C. H.; Meng, Q. B. Peptide Gene Delivery Vectors for Specific Transfection of Glioma Cells. ACS Biomater. Sci. Eng. 2020, 6, 6778–6789. DOI: 10.1021/acsbiomaterials.0c01336.
  • Lou, B.; De Koker, S.; Lau, C. Y. J.; Hennink, W. E.; Mastrobattista, E. mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate Antigen Presenting Cells. Bioconjug. Chem. 2019, 30, 461–475. DOI: 10.1021/acs.bioconjchem.8b00524.
  • Su, F. Y.; Zhao, Q. H.; Dahotre, S. N.; Gamboa, L.; Bawage, S. S.; Trenkle, A. D. S.; Zamat, A.; Phuengkham, H.; Ahmed, R.; Santangelo, P. J.; Kwong, G. A. In Vivo mRNA Delivery to Virus-Specific T Cells by Light-Induced Ligand Exchange of MHC Class I Antigen-Presenting Nanoparticles. Sci. Adv. 2022, 8, eabm7950. DOI: 10.1126/sciadv.abm7950.
  • Yan, Y.; Liu, X. Y.; Lu, A.; Wang, X. Y.; Jiang, L. X.; Wang, J. C. Non-Viral Vectors for RNA Delivery. J. Control. Release 2022, 342, 241–279. DOI: 10.1016/j.jconrel.2022.01.008.
  • Menager, M. M.; Littman, D. R. Actin Dynamics Regulates Dendritic Cell-Mediated Transfer of HIV-1 to T Cells. Cell 2016, 164, 695–709. DOI: 10.1016/j.cell.2015.12.036.
  • VanCompernolle, S. E.; Taylor, R. J.; Oswald-Richter, K.; Jiang, J. Y.; Youree, B. E.; Bowie, J. H.; Tyler, M. J.; Conlon, J. M.; Wade, D.; Aiken, C.; et al. Antimicrobial Peptides from Amphibian Skin Potently Inhibit Human Immunodeficiency Virus Infection and Transfer of Virus from Dendritic Cells to T Cells. J. Virol. 2005, 79, 11598–11606. DOI: 10.1128/JVI.79.18.11598-11606.2005.
  • Wilson, S. S.; Wiens, M. E.; Smith, J. G. Antiviral Mechanisms of Human Defensins. J. Mol. Biol. 2013, 425, 4965–4980. DOI: 10.1016/j.jmb.2013.09.038.
  • Lalani, S.; Gew, L. T.; Poh, C. L. Antiviral Peptides against Enterovirus A71 Causing Hand, Foot and Mouth Disease. Peptides 2021, 136, 170443. DOI: 10.1016/j.peptides.2020.170443.
  • Kozhikhova, K. V.; Shilovskiy, I. P.; Shatilov, A. A.; Timofeeva, A. V.; Turetskiy, E. A.; Vishniakova, L. I.; Nikolskii, A. A.; Barvinskaya, E. D.; Karthikeyan, S.; Smirnov, V. V.; et al. Linear and Dendrimeric Antiviral Peptides: Design, Chemical Synthesis and Activity against Human Respiratory Syncytial Virus. J. Mater. Chem. B 2020, 8, 2607–2617. DOI: 10.1039/c9tb02485a.
  • Callaway, E. Fast-Evolving COVID Variants Complicate Vaccine Updates. Nature 2022, 607, 18–19. DOI: 10.1038/d41586-022-01771-3.
  • Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Chiba, S.; Halfmann, P.; Nagai, H.; et al. Efficacy of Antibodies and Antiviral Drugs against Covid-19 Omicron Variant. N Engl. J. Med. 2022, 386, 995–998. DOI: 10.1056/NEJMc2119407.
  • Chowdhury, S. M.; Talukder, S. A.; Khan, A. M.; Afrin, N.; Ali, M. A.; Islam, R.; Parves, R.; Al Mamun, A.; Abu Sufian, M.; Hossain, M. N.; et al. Antiviral Peptides as Promising Therapeutics against SARS-CoV-2. J. Phys. Chem. B 2020, 124, 9785–9792. DOI: 10.1021/acs.jpcb.0c05621.
  • Zhao, H. J.; To, K. K. W.; Lam, H.; Zhang, C. Y.; Peng, Z.; Meng, X. J.; Wang, X. K.; Zhang, A. J.; Yan, B. P.; Cai, J. P.; et al. A Trifunctional Peptide Broadly Inhibits SARS-CoV-2 Delta and Omicron Variants in Hamsters. Cell Discov. 2022, 8, 62. DOI: 10.1038/s41421-022-00428-9.
  • Holly, M. K.; Diaz, K.; Smith, J. G. Defensins in Viral Infection and Pathogenesis. Annu. Rev. Virol. 2017, 4, 369–391. DOI: 10.1146/annurev-virology-101416-041734.
  • Lu, L.; Liu, Q.; Zhu, Y.; Chan, K. H.; Qin, L. L.; Li, Y.; Wang, Q.; Chan, J. F. W.; Du, L. Y.; Yu, F.; et al. Structure-Based Discovery of Middle East Respiratory Syndrome Coronavirus Fusion Inhibitor. Nat. Commun. 2014, 5, 3067. DOI: 10.1038/ncomms4067.
  • Xia, S.; Yan, L.; Xu, W.; Agrawal, A. S.; Algaissi, A.; Tseng, C. T. K.; Wang, Q.; Du, L. Y.; Tan, W. J.; Wilson, I. A.; et al. A Pan-Coronavirus Fusion Inhibitor Targeting the HR1 Domain of Human Coronavirus Spike. Sci. Adv. 2019, 5, eaav4580. DOI: 10.1126/sciadv.aav4580.
  • Xia, S.; Liu, M. Q.; Wang, C.; Xu, W.; Lan, Q. S.; Feng, S. L.; Qi, F. F.; Bao, L. L.; Du, L. Y.; Liu, S. W.; et al. Inhibition of SARS-CoV-2 (Previously 2019-nCoV) Infection by a Highly Potent Pan-Coronavirus Fusion Inhibitor Targeting Its Spike Protein That Harbors a High Capacity to Mediate Membrane Fusion. Cell Res. 2020, 30, 343–355. DOI: 10.1038/s41422-020-0305-x.
  • Cully, M. Immune Status Could Determine Efficacy of COVID-19 Therapies. Nat. Rev. Drug Discov. 2020, 19, 431–434. DOI: 10.1038/d41573-020-00110-3.
  • Song, Z.; Fu, H.; Wang, R.; Pacheco, L. A.; Wang, X.; Lin, Y.; Cheng, J. Secondary Structures in Synthetic Polypeptides from N-Carboxyanhydrides: Design, Modulation, Association, and Material Applications. Chem. Soc. Rev. 2018, 47, 7401–7425., DOI: 10.1039/c8cs00095f.
  • Bao, L.; Deng, W.; Huang, B.; Gao, H.; Liu, J.; Ren, L.; Wei, Q.; Yu, P.; Xu, Y.; Qi, F.; et al. The Pathogenicity of SARS-CoV-2 in hACE2 Transgenic Mice. Nature 2020, 583, 830–833.,. DOI: 10.1038/s41586-020-2312-y.
  • Copolovici, D. M.; Langel, K.; Eriste, E.; Langel, Ü. Cell-Penetrating Peptides: Design, Synthesis, and Applications. ACS Nano. 2014, 8, 1972–1994. DOI: 10.1021/nn4057269.
  • Coolen, A. L.; Lacroix, C.; Mercier-Gouy, P.; Delaune, E.; Monge, C.; Exposito, J. Y.; Verrier, B. Poly(Lactic Acid) Nanoparticles and Cell-Penetrating Peptide Potentiate mRNA-Based Vaccine Expression in Dendritic Cells Triggering Their Activation. Biomaterials 2019, 195, 23–37. DOI: 10.1016/j.biomaterials.2018.12.019.
  • Uchida, S.; Yamaberi, Y.; Tanaka, M.; Oba, M. A Helix Foldamer Oligopeptide Improves Intracellular Stability and Prolongs Protein Expression of the Delivered mRNA. Nanoscale 2021, 13, 18941–18946. DOI: 10.1039/d1nr03600a.
  • Fauci, A. S.; Morens, D. M. Zika Virus in the Americas-Yet Another Arbovirus Threat. N Engl. J. Med. 2016, 374, 601–604. DOI: 10.1056/NEJMp1600297.
  • Cho, N. J.; Glenn, J. S. Materials Science Approaches in the Development of Broad-Spectrum Antiviral Therapies. Nat. Mater. 2020, 19, 813–816. DOI: 10.1038/s41563-020-0698-4.
  • Peplow, M. Nanotechnology Offers Alternative Ways to Fight COVID-19 Pandemic with Antivirals. Nat. Biotechnol. 2021, 39, 1172–1174. DOI: 10.1038/s41587-021-01085-1.
  • Li, B.; Zhao, Y.; Wu, X.; Wu, H.; Tang, W.; Yu, X.; Mou, J.; Tan, W.; Jin, M.; Li, W.; et al. Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS Nano. 2023, 17, 7017–7034. DOI: 10.1021/acsnano.3c02050.
  • Kuroki, A.; Tay, J.; Lee, G. H.; Yang, Y. Y. Broad-Spectrum Antiviral Peptides and Polymers. Adv. Healthc. Mater. 2021, 10, e2101113.
  • de Vries, R. D.; Schmitz, K. S.; Bovier, F. T.; Predella, C.; Khao, J.; Noack, D.; Haagmans, B. L.; Herfst, S.; Stearns, K. N.; Drew-Bear, J.; et al. Intranasal Fusion Inhibitory Lipopeptide Prevents Direct-contact SARS-CoV-2 Transmission in Ferrets. Science 2021, 371, 1379–1382. DOI: 10.1126/science.abf4896.
  • Zhao, H. J.; To, K. K. W.; Sze, K. H.; Yung, T. T. M.; Bian, M. J.; Lam, H. Y.; Yeung, M. L.; Li, C.; Chu, H.; Yuen, K. Y. a Broad-Spectrum Virus- and Host-Targeting Peptide against Respiratory Viruses Including Influenza Virus and SARS-CoV-2. Nat. Commun. 2020, 11, 4252. DOI: 10.1038/s41467-020-17986-9.
  • Outlaw, V. K.; Cheloha, R. W.; Jurgens, E. M.; Bovier, F. T.; Zhu, Y.; Kreitler, D. F.; Harder, O.; Niewiesk, S.; Porotto, M.; Gellman, S. H.; Moscona, A. Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection. J. Am. Chem. Soc. 2021, 143, 5958–5966. DOI: 10.1021/jacs.1c01565.
  • Bovier, F. T.; Rybkina, K.; Biswas, S.; Harder, O.; Marcink, T. C.; Niewiesk, S.; Moscona, A.; Alabi, C. A.; Porotto, M. Inhibition of Measles Viral Fusion is Enhanced by Targeting Multiple Domains of the Fusion Protein. ACS Nano. 2021, 15, 12794–12803. DOI: 10.1021/acsnano.1c02057.
  • Saito, M.; Itoh, Y.; Yasui, F.; Munakata, T.; Yamane, D.; Ozawa, M.; Ito, R.; Katoh, T.; Ishigaki, H.; Nakayama, M.; et al. Macrocyclic Peptides Exhibit Antiviral Effects against Influenza Virus HA and Prevent Pneumonia in Animal Models. Nat. Commun. 2021, 12, 2654. DOI: 10.1038/s41467-021-22964-w.
  • Hoffmann, A. R.; Guha, S.; Wu, E.; Ghimire, J.; Wang, Y. L.; He, J.; Garry, R. F.; Wimley, W. C. Broad-Spectrum Antiviral Entry Inhibition by Interfacially Active Peptides. J. Virol. 2020, 94, e01682-20. DOI: 10.1128/JVI.01682-20.
  • Malonis, R. J.; Lai, J. R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem. Rev. 2020, 120, 3210–3229. DOI: 10.1021/acs.chemrev.9b00472.
  • Bhardwaj, P.; Bhatia, E.; Sharma, S.; Ahamad, N.; Banerjee, R. Advancements in Prophylactic and Therapeutic Nanovaccines. Acta Biomater. 2020, 108, 1–21. DOI: 10.1016/j.actbio.2020.03.020.
  • Peng, S.; Cao, F. Q.; Xia, Y. F.; Gao, X. D.; Dai, L. P.; Yan, J. H.; Ma, G. H. Particulate Alum via Pickering Emulsion for an Enhanced COVID-19 Vaccine Adjuvant. Adv. Mater. 2020, 32, 2004210.
  • Zhang, R.; Wang, C. G.; Guan, Y. K.; Wei, X. M.; Sha, M. Y.; Yi, M. R.; Jing, M.; Lv, M. Z.; Guo, W.; Xu, J.; et al. Manganese Salts Function as Potent Adjuvants. Cell. Mol. Immunol. 2021, 18, 1222–1234. DOI: 10.1038/s41423-021-00669-w.
  • Scheiermann, J.; Klinman, D. M. Clinical Evaluation of CpG Oligonucleotides as Adjuvants for Vaccines Targeting Infectious Diseases and Cancer. Vaccine 2014, 32, 6377–6389. DOI: 10.1016/j.vaccine.2014.06.065.
  • Mata-Haro, V.; Cekic, C.; Martin, M.; Chilton, P. M.; Casella, C. R.; Mitchell, T. C. The Vaccine Adjuvant Monophosphoryl Lipid a as a TRIF-Biased Agonist of TLR4. Science 2007, 316, 1628–1632. DOI: 10.1126/science.1138963.
  • Zeng, Y. J.; Xiang, Y. F.; Sheng, R. L.; Tomas, H.; Rodrigues, J.; Gu, Z. W.; Zhang, H.; Gong, Q. Y.; Luo, K. Polysaccharide-Based Nanomedicines for Cancer Immunotherapy: A Review. Bioact. Mater. 2021, 6, 3358–3382. DOI: 10.1016/j.bioactmat.2021.03.008.
  • Lu, T.; Hu, F. M.; Yue, H.; Yang, T. Y.; Ma, G. H. The Incorporation of Cationic Property and Immunopotentiator in Poly (Lactic Acid) Microparticles Promoted the Immune Response against Chronic Hepatitis B. J. Control. Release 2020, 321, 576–588. DOI: 10.1016/j.jconrel.2020.02.039.
  • Song, H. J.; Huang, P. S.; Niu, J. F.; Shi, G. N.; Zhang, C. N.; Kong, D. L.; Wang, W. W. Injectable Polypeptide Hydrogel for Dual-Delivery of Antigen and TLR3 Agonist to Modulate Dendritic Cells in Vivo and Enhance Potent Cytotoxic T-Lymphocyte Response against Melanoma. Biomaterials 2018, 159, 119–129. DOI: 10.1016/j.biomaterials.2018.01.004.
  • Yang, P. X.; Song, H. J.; Qin, Y. B.; Huang, P. S.; Zhang, C. N. A.; Kong, D. L.; Wang, W. W. Engineering Dendritic-Cell-Based Vaccines and PD-1 Blockade in Self-Assembled Peptide Nanofibrous Hydrogel to Amplify Antitumor T-Cell Immunity. Nano Lett. 2018, 18, 4377–4385. DOI: 10.1021/acs.nanolett.8b01406.
  • Su, Y.; Xu, W.; Wei, Q.; Ma, Y.; Ding, J.; Chen, X. Chiral Polypeptide Nanoparticles as Nanoadjuvants of Nanovaccines for Efficient Cancer Prevention and Therapy. Sci. Bull. (Beijing) 2023, 68, 284–294. DOI: 10.1016/j.scib.2023.01.024.
  • Luo, Z.; Li, P.; Deng, J.; Gao, N.; Zhang, Y.; Pan, H.; Liu, L.; Wang, C.; Cai, L.; Ma, Y.; etal. Cationic Polypeptide Micelle-Based Antigen Delivery System: A Simple and Robust Adjuvant to Improve Vaccine Efficacy. J. Control. Release 2013, 170, 259–267. DOI: 10.1016/j.jconrel.2013.05.027.
  • Zhang, R.; Tang, L.; Tian, Y.; Ji, X.; Hu, Q.; Zhou, B.; Zhenyu, D.; Heng, X.; Yang, L. Cholesterol-Modified DP7 Enhances the Effect of Individualized Cancer Immunotherapy Based on Neoantigens. Biomaterials 2020, 241, 119852. DOI: 10.1016/j.biomaterials.2020.119852.
  • Luo, Z.; Wu, Q.; Yang, C.; Wang, H.; He, T.; Wang, Y.; Wang, Z.; Chen, H.; Li, X.; Gong, C.; Yang, Z. Lightning the Spin: Harnessing the Potential of 2D Magnets in Opto-Spintronics. Adv. Mater. 2023, e2306920.
  • Paszek, M. J.; DuFort, C. C.; Rossier, O.; Bainer, R.; Mouw, J. K.; Godula, K.; Hudak, J. E.; Lakins, J. N.; Wijekoon, A. C.; Cassereau, L.; et al. The Cancer Glycocalyx Mechanically Primes Integrin-Mediated Growth and Survival. Nature 2014, 511, 319–325. DOI: 10.1038/nature13535.
  • Li, Q. Y.; Xie, Y. X.; Wong, M. R.; Barboza, M.; Lebrilla, C. B. Comprehensive Structural Glycomic Characterization of the Glycocalyxes of Cells and Tissues. Nat. Protoc. 2020, 15, 2668–2704. DOI: 10.1038/s41596-020-0350-4.
  • Clauss, Z. S.; Kramer, J. R. Design, Synthesis and Biological Applications of Glycopolypeptides. Adv. Drug Deliv. Rev. 2021, 169, 152–167. DOI: 10.1016/j.addr.2020.12.009.
  • Song, Y. Y.; Dong, C. M. Sugar-Dependent Targeting and Immune Adjuvant Effects of Hyperbranched Glycosylated Polypeptide Nanoparticles for Ovalbumin Delivery. Chin. Chem. Lett 2022, 33, 4084–4088. DOI: 10.1016/j.cclet.2022.01.051.
  • Xing, R. R.; Li, S. K.; Zhang, N.; Shen, G. Z.; Mohwald, H.; Yan, X. H. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response. Biomacromolecules 2017, 18, 3514–3523. DOI: 10.1021/acs.biomac.7b00787.
  • Song, H. J.; Yang, P. X.; Huang, P. S.; Zhang, C. N.; Kong, D. L.; Wang, W. W. Injectable Polypeptide Hydrogel-Based co-Delivery of Vaccine and Immune Checkpoint Inhibitors Improves Tumor Immunotherapy. Theranostics 2019, 9, 2299–2314. DOI: 10.7150/thno.30577.
  • Ye, T. T.; Zhong, Z. F.; Garcia-Sastre, A.; Schotsaert, M.; De Geest, B. G. Current Status of COVID-19 (Pre)Clinical Vaccine Development. Angew. Chem. Int. Ed. Engl. 2020, 59, 18885–18897. DOI: 10.1002/anie.202008319.
  • Lim, J. W.; Na, W.; Kim, H. O.; Yeom, M.; Park, G.; Kang, A.; Chun, H.; Park, C.; Oh, S.; Le, V. P.; et al. Cationic Poly(Amino Acid) Vaccine Adjuvant for Promoting Both Cell-Mediated and Humoral Immunity against Influenza Virus. Adv. Healthc. Mater. 2019, 8, e1800953. DOI: 10.1002/adhm.201800953.
  • Jeong, H.; Lee, C. S.; Lee, J.; Lee, J.; Hwang, H. S.; Lee, M.; Na, K. Hemagglutinin Nanoparticulate Vaccine with Controlled Photochemical Immunomodulation for Pathogenic Influenza‐Specific Immunity. Adv. Sci. 2021, 8, 2100118. DOI: 10.1002/advs.202100118.
  • Liang, F.; Lindgren, G.; Sandgren, K. J.; Thompson, E. A.; Francica, J. R.; Seubert, A.; De Gregorio, E.; Barnett, S.; O'Hagan, D. T.; Sullivan, N. J.; et al. Vaccine Priming is Restricted to Draining Lymph Nodes and Controlled by Adjuvant-Mediated Antigen Uptake. Sci. Transl. Med. 2017, 9, eaal2094., DOI: 10.1126/scitranslmed.aal2094.
  • Roth, G. A.; Picece, V. C. T. M.; Ou, B.; Luo, W.; Pulendran, B.; Appel, E. A. Designing Spatial and Temporal Control of Vaccine Responses. Nat. Rev. Mater. 2022, 7, 174–195. DOI: 10.1038/s41578-021-00372-2.
  • Riese, P.; Sakthivel, P.; Trittel, S.; Guzman, C. A. Intranasal Formulations: Promising Strategy to Deliver Vaccines. Expert Opin. Drug Deliv. 2014, 11, 1619–1634. DOI: 10.1517/17425247.2014.931936.
  • Longet, S.; Lundahl, M. L. E.; Lavelle, E. C. Targeted Strategies for Mucosal Vaccination. Bioconjug. Chem. 2018, 29, 613–623. DOI: 10.1021/acs.bioconjchem.7b00738.
  • Kong, R.; Xu, K.; Zhou, T. Q.; Acharya, P.; Lemmin, T.; Liu, K.; Ozorowski, G.; Soto, C.; Taft, J. D.; Bailer, R. T.; et al. Fusion Peptide of HIV-1 as a Site of Vulnerability to Neutralizing Antibody. Science 2016, 352, 828–833. DOI: 10.1126/science.aae0474.
  • Heitmann, J. S.; Bilich, T.; Tandler, C.; Nelde, A.; Maringer, Y.; Marconato, M.; Reusch, J.; Jager, S.; Denk, M.; Richter, M.; et al. A COVID-19 Peptide Vaccine for the Induction of SARS-CoV-2 T Cell Immunity. Nature 2022, 601, 617–622. DOI: 10.1038/s41586-021-04232-5.
  • Lizotte, P. H.; Wen, A. M.; Sheen, M. R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N. F.; Fiering, S. In Situ Vaccination with Cowpea Mosaic Virus Nanoparticles Suppresses Metastatic Cancer. Nat. Nanotechnol. 2016, 11, 295–303. DOI: 10.1038/nnano.2015.292.
  • Rudra, J. S.; Tian, Y. F.; Jung, J. P.; Collier, J. H. A Self-Assembling Peptide Acting as an Immune Adjuvant. Proc. Natl. Acad. Sci. U S A 2010, 107, 622–627. DOI: 10.1073/pnas.0912124107.
  • Wu, Y. Y.; Kelly, S. H.; Sanchez-Perez, L.; Sampson, J. H.; Collier, J. H. Comparative Study of α-Helical and β-Sheet Self-Assembled Peptide Nanofiber Vaccine Platforms: Influence of Integrated T-Cell Epitopes. Biomater. Sci. 2020, 8, 3522–3535. DOI: 10.1039/d0bm00521e.
  • Wu, G.; Zhou, H.; Zhang, J.; Tian, Z. Y.; Liu, X.; Wang, S.; Coley, C. W.; Lu, H. a High-Throughput Platform for Efficient Exploration of Functional Polypeptide Chemical Space. Nat. Synth. 2023, 2, 515–526. DOI: 10.1038/s44160-023-00294-7.
  • Uchida, H.; Itaka, K.; Nomoto, T.; Ishii, T.; Suma, T.; Ikegami, M.; Miyata, K.; Oba, M.; Nishiyama, N.; Kataoka, K. Modulated Protonation of Side Chain Aminoethylene Repeats in N-Substituted Polyaspartamides Promotes mRNA Transfection. J. Am. Chem. Soc. 2014, 136, 12396–12405. DOI: 10.1021/ja506194z.
  • Barbier, A. J.; Jiang, A. Y.; Zhang, P.; Wooster, R.; Anderson, D. G. The Clinical Progress of mRNA Vaccines and Immunotherapies. Nat. Biotechnol. 2022, 40, 840–854. DOI: 10.1038/s41587-022-01294-2.
  • Machtakova, M.; Thérien-Aubin, H.; Landfester, K. Polymer Nano-Systems for the Encapsulation and Delivery of Active Biomacromolecular Therapeutic Agents. Chem. Soc. Rev. 2022, 51, 128–152. DOI: 10.1039/d1cs00686j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.