1,430
Views
9
CrossRef citations to date
0
Altmetric
REVIEW

The theory of RNA-mediated gene evolution

Pages 1-5 | Received 13 Jul 2014, Accepted 25 Nov 2014, Published online: 27 Jan 2015

References

  • Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, Jr., Kundaje A, Gunawardena HP, Yu Y, Xie L, et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 2012; 22:1646-57; PMID:22955977; http://dx.doi.org/10.1101/gr.134767.111
  • St Laurent G, 3rd, Shtokalo D, Tackett M, Yang Z, Eremina T, Wahlestedt C, Inchima SU, Seilheimer B, McCaffrey TA, Kapranov P. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells. BMC Genomics 2012; 13:504; PMID:23006825; http://dx.doi.org/10.1186/1471-2164-13-504
  • Rosenbloom KR, Dreszer TR, Long JC, Malladi VS, Sloan CA, Raney BJ, Cline MS, Karolchik D, Barber GP, Clawson H, et al. ENCODE whole-genome data in the UCSC Genome browser: update 2012. Nucleic Acids Res 2012; 40:D912-7; PMID:22075998; http://dx.doi.org/10.1093/nar/gkr1012
  • Pennisi E. Genomics. ENCODE project writes eulogy for junk DNA. Science 2012; 337:1159, 61; PMID:22955811; http://dx.doi.org/10.1126/science.337.6099.1159
  • Ohno S. So much "junk" DNA in our genome. Brookhaven Sym Biol 1972; 23:366-70; PMID:5065367
  • Ohno S, Yomo T. The grammatical rule for all DNA: junk and coding sequences. Electrophoresis 1991; 12:103-8; PMID:2040257; http://dx.doi.org/10.1002/elps.1150120203
  • Morris KV, Mattick JS. The rise of regulatory RNA. Nat Rev Genet 2014; 15:423-37; PMID:24776770; http://dx.doi.org/10.1038/nrg3722
  • Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al. The transcriptional landscape of the mammalian genome. Science 2005; 309:1559-63; PMID:16141072; http://dx.doi.org/10.1126/science.1112014
  • Malecova B, Morris KV. Transcriptional gene silencing through epigenetic changes mediated by non-coding RNAs. Curr Opin Mol Ther 2010; 12:214-22; PMID:20373265
  • Turner AM, Morris KV. Controlling transcription with noncoding RNAs in mammalian cells. Biotechniques 2010; 48:ix-xvi; PMID:20569216; http://dx.doi.org/10.2144/000113442
  • Allis CD, Jenuwein T, Reinberg D. Epigenetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2007.
  • Rechavi O, Minevich G, Hobert O. Transgenerational inheritance of an acquired small RNA-based antiviral response in C. elegans. Cell 2011; 147:1248-56; PMID:22119442; http://dx.doi.org/10.1016/j.cell.2011.10.042
  • Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS ONE 2012; 7:e30583; PMID:22359544; http://dx.doi.org/10.1371/journal.pone.0030583
  • Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 2010; 68:408-15; PMID:20673872; http://dx.doi.org/10.1016/j.biopsych.2010.05.036
  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 2008; 105:17046-9; PMID:18955703; http://dx.doi.org/10.1073/pnas.0806560105
  • Barry G. Lamarckian evolution explains human brain evolution and psychiatric disorders. Front Neurosci 2013; 7:224; PMID:24324395; http://dx.doi.org/10.3389/fnins.2013.00224
  • Hawkins PG, Santoso S, Adams C, Anest V, Morris KV. Promoter targeted small RNAs induce long-term transcriptional gene silencing in human cells. Nucleic Acids Res 2009; 37:2984-95; PMID:19304753; http://dx.doi.org/10.1093/nar/gkp127
  • Morris KV. Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells. Epigenetics 2009; 4:296-301; PMID:19633414; http://dx.doi.org/10.4161/epi.4.5.9282
  • Johnsson P, Ackley A, Vidarsdottir L, Lui WO, Corcoran M, Grander D, Morris KV. A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nat Struct Mol Biol 2013; 20:440-6; PMID:23435381; http://dx.doi.org/10.1038/nsmb.2516
  • Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, Chen ZX, Riggs AD, Rossi JJ, Morris KV. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA 2006; 12:256-62; PMID:16373483; http://dx.doi.org/10.1261/rna.2235106
  • Ross JP, Suetake I, Tajima S, Molloy PL. Recombinant mammalian DNA methyltransferase activity on model transcriptional gene silencing short RNA-DNA heteroduplex substrates. Biochem J 2010; 432:323-32; PMID:20846120; http://dx.doi.org/10.1042/BJ20100579
  • Turner AM, De La Cruz J, Morris KV. Mobilization-competent lentiviral vector-mediated sustained transcriptional modulation of HIV-1 expression. Mol Ther 2009; 17:360-8; PMID:19066594; http://dx.doi.org/10.1038/mt.2008.268
  • Vire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, Morey L, Van Eynde A, Bernard D, Vanderwinden JM, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439:871-4; PMID:16357870; http://dx.doi.org/10.1038/nature04431
  • Wijesinghe P, Bhagwat AS. Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res 2012; 40:9206-17; PMID:22798497; http://dx.doi.org/10.1093/nar/gks685
  • Carpenter MA, Li M, Rathore A, Lackey L, Law EK, Land AM, Leonard B, Shandilya SM, Bohn MF, Schiffer CA, et al. Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A. J Biol Chem 2012; 287:34801-8; PMID:22896697; http://dx.doi.org/10.1074/jbc.M112.385161
  • Suspene R, Aynaud MM, Vartanian JP, Wain-Hobson S. Efficient deamination of 5-methylcytidine and 5-substituted cytidine residues in DNA by human APOBEC3A cytidine deaminase. PLoS ONE 2013; 8:e63461; PMID:23840298; http://dx.doi.org/10.1371/journal.pone.0063461
  • Hashimoto H, Hong S, Bhagwat AS, Zhang X, Cheng X. Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation. Nucleic Acids Res 2012; 40:10203-14; PMID:22962365; http://dx.doi.org/10.1093/nar/gks845
  • Jacobs AL, Schar P. DNA glycosylases: in DNA repair and beyond. Chromosoma 2012; 121:1-20; PMID:22048164; http://dx.doi.org/10.1007/s00412-011-0347-4
  • Lutsenko E, Bhagwat AS. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells. A model, its experimental support and implications. Mutat Res 1999; 437:11-20; PMID:10425387; http://dx.doi.org/10.1016/S1383-5742(99)00065-4
  • Shen JC, Rideout WM, 3rd, Jones PA. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res 1994; 22:972-6; PMID:8152929; http://dx.doi.org/10.1093/nar/22.6.972
  • Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002; 16:6-21; PMID:11782440; http://dx.doi.org/10.1101/gad.947102
  • Neddermann P, Gallinari P, Lettieri T, Schmid D, Truong O, Hsuan JJ, Wiebauer K, Jiricny J. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J Biol Chem 1996; 271:12767-74; PMID:8662714; http://dx.doi.org/10.1074/jbc.271.48.30986
  • Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature 2013; 500:415-21; PMID:23945592; http://dx.doi.org/10.1038/nature12477
  • Zemojtel T, Kielbasa SM, Arndt PF, Behrens S, Bourque G, Vingron M. CpG deamination creates transcription factor-binding sites with high efficiency. Genome biology and evolution 2011; 3:1304-11; PMID:22016335; http://dx.doi.org/10.1093/gbe/evr107
  • Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 2012; 40:4841-9; PMID:22362737; http://dx.doi.org/10.1093/nar/gks155
  • Kondo E, Gu Z, Horii A, Fukushige S. The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes. Mol Cell Biol 2005; 25:4388-96; PMID:15899845; http://dx.doi.org/10.1128/MCB.25.11.4388-4396.2005
  • Kemmerich K, Dingler FA, Rada C, Neuberger MS. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice. Nucleic Acids Res 2012; 40:6016-25; PMID:22447450; http://dx.doi.org/10.1093/nar/gks259
  • Budworth H, McMurray CT. Bidirectional transcription of trinucleotide repeats: roles for excision repair. DNA repair 2013; 12:672-84; PMID:23669397; http://dx.doi.org/10.1016/j.dnarep.2013.04.019
  • Morris KV. RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 2009; 19:299-306.PMID:19943804; http://dx.doi.org/10.1089/oli.2009.0212
  • Turner AM, Ackley AM, Matrone MA, Morris KV. Characterization of an HIV-targeted transcriptional gene-silencing RNA in primary cells. Hum Gene Ther 2012; 23:473-83; PMID:22122263; http://dx.doi.org/10.1089/hum.2011.165
  • Weinberg MS, Morris KV. A new world order: tailored gene targeting and regulation using CRISPR. Mol Ther 2014; 22:893; PMID:24787973; http://dx.doi.org/10.1038/mt.2014.54
  • Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF. Mutation detection using Surveyor nuclease. Biotechniques 2004; 36:702-7; PMID:15088388
  • Johnsson P, Lipovich L, Grander D, Morris KV. Evolutionary conservation of long noncoding RNAs; sequence, structure, function. Biochim Biophys Acta 2013; PMID:24184936; http://dx.doi.org/10.1016/j.bbagen.2013.10.035
  • Holz-Schietinger C, Reich NO. RNA modulation of the human DNA methyltransferase 3A. Nucleic Acids Res 2012; 40:8550-7; PMID:22730298; http://dx.doi.org/10.1093/nar/gks537
  • Jeffery L, Nakielny S. Components of the DNA methylation system of chromatin control are RNA-binding proteins. J Biol Chem 2004; 279:49479-87; PMID:15342650; http://dx.doi.org/10.1074/jbc.M409070200
  • Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H. Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 2008; 451:202-6; PMID:18185590; http://dx.doi.org/10.1038/nature06468
  • Hawkins PG, Morris KV. Transcriptional regulation of oct4 by a long non-coding RNA antisense to oct4-pseudogene 5. Transcription 2010; 1:165-75; PMID:21151833; http://dx.doi.org/10.4161/trns.1.3.13332
  • Morris KV, Santoso S, Turner AM, Pastori C, Hawkins PG. Bidirectional transcription directs both transcriptional gene activation and suppression in human cells. PLoS Genet 2008; 4:e1000258; PMID:19008947; http://dx.doi.org/10.1371/journal.pgen.1000258
  • Morris KV. Non-coding RNAs, epigenetic memory, and the passage of information to progeny. RNA Biol 2009; 6:242-7; PMID:19305164; http://dx.doi.org/10.4161/rna.6.3.8353

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.