3,278
Views
60
CrossRef citations to date
0
Altmetric
Research Paper

Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach

, , , , &
Pages 135-146 | Received 30 Oct 2015, Accepted 11 Feb 2016, Published online: 05 Mar 2018

References

  • Pope CA, Dockery DW. Health effects of fine particulate air pollution: Lines that connect. J Air Waste Manage Assoc. 2006;56:709–742. doi:10.1080/10473289.2006.10464485. PMID:16805397
  • Yang W, Omaye ST. Air pollutants, oxidative stress and human health. Mutat Res. 2009;674:45–54. doi:10.1016/j.mrgentox.2008.10.005. PMID:19013537
  • Ghio AJ, Kim C, Devlin RB. Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med. 2000;162:981–988. doi:10.1164/ajrccm.162.3.9911115. PMID:10988117
  • Ghio AJ, Huang Y-CT. Exposure to concentrated ambient particles (CAPs): A review. Inhal Toxicol. 2004;16:53–59. doi:10.1080/08958370490258390. PMID:14744665
  • Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American heart association. Circulation. 2010;121:2331–2378. doi:10.1161/CIR.0b013e3181dbece1. PMID:20458016
  • Malmström K, Pelkonen AS, Malmberg LP, et al. Lung function, airway remodelling and inflammation in symptomatic infants: outcome at 3 years. Thorax. 2011;66:157–162. doi:10.1136/thx.2010.139246. PMID:21199817
  • Blomberg A, Krishna MT, Bocchino V, et al. The inflammatory effects of 2 ppm NO2 on the airways of healthy subjects. Am J Respir Crit Care Med. 1997;156:418–424. doi:10.1164/ajrccm.156.2.9612042. PMID:9279218
  • Barker DJP. Developmental origins of adult health and disease. J Epidemiol Commun Health. 2004;58:114–115. doi:10.1136/jech.58.2.114. PMID:14729887
  • Alastalo H, von Bonsdorff MB, Räikkönen K, et al. Early life stress and physical and psychosocial functioning in late adulthood. PLoS ONE. 2013;8:e69011. doi:10.1371/journal.pone.0069011. PMID:23861956
  • Pedersen M, Giorgis-Allemand L, Bernard C, et al. Ambient air pollution and low birthweight: a European cohort study (ESCAPE). Lancet Resp Med. 2013;1:695–704. doi:10.1016/S2213-2600(13)70192-9. PMID:24429273
  • Rappazzo KM, Daniels DL, Messer LC, et al. Exposure to fine particulate matter during pregnancy and risk of preterm birth among women in New Jersey, Ohio, and Pennsylvania, 2000–2005. Environ Health Perspect. 2014;122:992–997. doi:10.1289/ehp.1307456. PMID:24879653
  • van den Hooven EH, Pierik FH, de Kluizenaar Y, et al. Air pollution exposure and markers of placental growth and function: The generation R study. Environ Health Perspect. 2012;120:1753–1759. PMID:22922820
  • Veras MM, Damaceno-Rodrigues NR, Caldini EG, et al. Particulate Urban air pollution affects the functional morphology of mouse placenta. Bio Reprod. 2008;79:578–584. doi:10.1095/biolreprod.108.069591. PMID:18509159
  • Saenen ND, Plusquin M, Bijnens E, et al. In Utero fine particle air pollution and placental expression of genes in the brain-derived Neurotrophic factor signaling pathway: An ENVIRONAGE birth cohort study. Environ Health Perspect. 2015. doi:10.1289/ehp.1408549.PMID:25816123
  • de Melo JO, Soto SF, Katayama IA, et al. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta. Toxicol Lett. 2015;232:475–480. doi:10.1016/j.toxlet.2014.12.001. PMID:25481569
  • Jansson T, Powell T. Role of the placenta in fetal programming: underlying mechanisms and potential interventional approaches. Clin Sci. 2007;113:1–13. doi:10.1042/CS20060339. PMID:17536998.
  • Etheridge A, Lee I, Hood L, et al. Extracellular microRNA: A new source of biomarkers. Mutat Res. 2011;717:85–90. doi:10.1016/j.mrfmmm.2011.03.004.
  • Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355. doi:10.1038/nature02871. PMID:15372042
  • Bartel DP. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–297. doi:10.1016/S0092-8674(04)00045-5. PMID:14744438
  • Wang Y, Lee CGL. MicroRNA and cancer – focus on apoptosis. J Cell Mol Med. 2009;13:12–23. doi:10.1111/j.1582-4934.2008.00510.x. PMID:19175697
  • Lu M, Zhang Q, Deng M, et al. An analysis of human MicroRNA and disease associations. PLoS ONE. 2008;3:e3420. doi:10.1371/journal.pone.0003420. PMID:18923704
  • Felekkis K, Touvana E, Stefanou C, et al. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia. 2010;14:236–240. PMID:21311629
  • Wilczynska A, Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015;22:22–33. doi:10.1038/cdd.2014.112. PMID:25190144
  • Fossati S, Baccarelli A, Zanobetti A, et al. Ambient particulate air pollution and microRNAs in elderly men. Epidemiology. 2014;25:68–78. doi:10.1097/EDE.0000000000000026. PMID:24257509
  • Bollati V, Marinelli B, Apostoli P, et al. Exposure to metal-rich particulate matter modifies the expression of candidate Micrornas in peripheral blood leukocytes. Environ Health Perspect. 2010;118:763–768. doi:10.1289/ehp.0901300. PMID:20061215
  • Fry RC, Rager JE, Bauer R, et al. Air toxics and epigenetic effects: ozone altered microRNAs in the sputum of human subjects. Am J Physiol Lung Cell Mol Physiol 2014;306:L1129–L1137. doi:10.1152/ajplung.00348.2013. PMID:24771714
  • Avissar-Whiting M, Veiga K, Uhl K, et al. Bisphenol a exposure leads to specific MicroRNA alterations in placental cells. Reprod Toxicol. 2010;29:401–406. doi:10.1016/j.reprotox.2010.04.004. PMID:20417706
  • Herberth G, Bauer M, Gasch M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clinical Immunol. 2014;133:543–550.e4. doi:10.1016/j.jaci.2013.06.036. PMID:23978443
  • Maccani MA, Avissar-Whiting M, Banister CE, et al. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5:583–589. doi:10.4161/epi.5.7.12762. PMID:20647767
  • Rudov A, Balduini W, Carloni S, et al. Involvement of miRNAs in placental alterations mediated by oxidative stress. Oxid Med Cell Longev. 2014;2014:7. doi:10.1155/2014/103068.
  • Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: A systematic review. Environ Health Perspect. 2015;123:399–411. doi:10.1289/ehp.1408459. PMID:25616258
  • Zhou X, Ren Y, Moore L, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Lab Invest. 2010;90:144–155. doi:10.1038/labinvest.2009.126. PMID:20048743
  • Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Nat Acad Sci U S A. 2005;102:13944–13949. doi:10.1073/pnas.0506654102. PMID:16166262
  • Rivas MA, Venturutti L, Huang Y-W, et al. Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development. Breast Cancer Res: BCR. 2012;14:R77–R. doi:10.1186/bcr3187. PMID:22583478
  • Yang Y, Meng H, Peng Q, et al. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther. 2015;22:23–29. doi:10.1038/cgt.2014.66. PMID:25477028
  • Ke Y, Zhao W, Xiong J, et al. Downregulation of miR-16 promotes growth and motility by targeting HDGF in non-small cell lung cancer cells. FEBS Lett. 2013;587:3153–3157. doi:10.1016/j.febslet.2013.08.010. PMID:23954293
  • Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 Expression in the placenta is associated with fetal growth. PLoS ONE. 2011;6:e21210. doi:10.1371/journal.pone.0021210. PMID:21698265
  • Baldeón RL, Weigelt K, de Wit H, et al. Decreased serum level of miR-146a as sign of chronic inflammation in Type 2 diabetic patients. PLoS ONE. 2014;9:e115209. doi:10.1371/journal.pone.0115209. PMID:25500583
  • Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res. 2008;79:581–588. doi:10.1093/cvr/cvn156. PMID:18550634
  • Wang W, Feng L, Zhang H, et al. Preeclampsia Up-regulates angiogenesis-associated MicroRNA (i.e., miR-17, -20a, and -20b) that target Ephrin-B2 and EPHB4 in human placenta. J Clinical Endocrinol Metab. 2012;97:E1051–E9. doi:10.1210/jc.2011-3131. PMID:22438230
  • Umemura K, Ishioka S-i, Endo T, et al. Roles of microRNA-34a in the pathogenesis of placenta accreta. J Obstet Gynaecol Res. 2013;39:67–74. doi:10.1111/j.1447-0756.2012.01898.x. PMID:22672425
  • Zhao T, Li J, Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab. 2010;299:E110–E116. doi:10.1152/ajpendo.00192.2010. PMID:20424141
  • Farraj AK, Hazari MS, Haykal-Coates N, et al. ST Depression, arrhythmia, vagal dominance, and reduced cardiac Micro-RNA in particulate-exposed rats. Am J Respir Cell Mol Biol. 2011;44:185–196. doi:10.1165/rcmb.2009-0456OC. PMID:20378750
  • Motta V, Angelici L, Nordio F, et al. Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol Sci. 2013;132:307–316. doi:10.1093/toxsci/kft013. PMID:23358196
  • Pineles BL, Romero R, Montenegro D, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. Am J Obstet Gynecol. 2007;196:261.e1–261.e6. doi:10.1016/j.ajog.2007.01.008.
  • Li Q, Kappil MA, Li A, et al. Exploring the associations between microRNA expression profiles and environmental pollutants in human placenta from the National Children's Study (NCS). Epigenetics. 2015;10:793–802. doi:10.1080/15592294.2015.1066960. PMID:26252056
  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62. doi:10.1038/nrg2045. PMID:17363974
  • Janssen BG, Godderis L, Pieters N, et al. Placental DNA hypomethylation in association with particulate air pollution in early life. Part Fibre Toxicol. 2013;10:22-. doi:10.1186/1743-8977-10-22. PMID:23742113
  • Sathyan P, Golden HB, Miranda RC. Competing Interactions between Micro-RNAs Determine neural progenitor survival and proliferation after ethanol exposure: evidence from an Ex Vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci. 2007;27:8546–8557. doi:10.1523/JNEUROSCI.1269-07.2007. PMID:17687032
  • Tal TL, Franzosa JA, Tilton SC, et al. MicroRNAs control neurobehavioral development and function in zebrafish. FASEB J. 2012;26:1452–1461. doi:10.1096/fj.11-194464. PMID:22253472
  • Wang L-L, Zhang Z, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Human Reprod. 2009;24:562–579. doi:10.1093/humrep/den439. PMID:19091803
  • Pietrzykowski AZ, Friesen RM, Martin GE, et al. Post-transcriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 2008;59:274–287. doi:10.1016/j.neuron.2008.05.032. PMID:18667155
  • Costantine M. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5. doi:10.3389/fphar.2014.00065. PMID:24772083
  • Lassmann T, Maida Y, Tomaru Y, et al. Telomerase Reverse Transcriptase Regulates microRNAs. Int J Mol Sci. 2015;16:1192–1208. doi:10.3390/ijms16011192. PMID:25569094
  • Colgin LM, Reddel RR. Telomere maintenance mechanisms and cellular immortalization. Curr Opin Genet Dev. 1999;9:97–103. doi:10.1016/S0959-437X(99)80014-8.
  • Bijnens E, Zeegers MP, Gielen M, et al. Lower placental telomere length may be attributed to maternal residential traffic exposure; a twin study. Environ Int. 2015;79:1–7. doi:10.1016/j.envint.2015.02.008. PMID:25756235
  • Kitagishi Y, Matsuda, S. Redox regulation of tumor suppressor PTEN in cancer and aging. Int J Mol Med. 2013;31:511–515. doi:10.3892/ijmm.2013.1235. PMID:23313933
  • Kuhn DE, Martin MM, Feldman DS, et al. Experimental validation of miRNA targets. Methods. 2008;44:47–54. doi:10.1016/j.ymeth.2007.09.005. PMID:18158132
  • Tokyol C, Aktepe F, Dilek FH, et al. Comparison of Placental PTEN and β1 integrin expression in early spontaneous abortion, early and late normal pregnancy. Ups J Med Sci. 2008;113:235–242. doi:10.3109/2000-1967-231. PMID:18509818
  • Li L, Kang J, Lei W. Role of Toll-like receptor 4 in inflammation-induced preterm delivery. Mol Human Reprod. 2010;16:267–272. doi:10.1093/molehr/gap106. PMID:19995880
  • Vaughan JE, Walsh SW. Activation of NF-κB in Placentas of Women with Preeclampsia. Hypertens Pregnancy. 2012;31:243–251. doi:10.3109/10641955.2011.642436.
  • Choi H-K, Choi BC, Lee S-H, et al. Expression of angiogenesis- and apoptosis-related genes in chorionic villi derived from recurrent pregnancy loss patients. Mol Reprod Dev. 2003;66:24–31. doi:10.1002/mrd.10331. PMID:12874795
  • Reynolds LP, Redmer RD. Utero-placental vascular development and placental function. J Anim Sci. 1995;73:1839–1851. doi:10.2527/1995.7361839x. PMID:7545661
  • Winn VD, Haimov-Kochman R, Paquet AC, et al. Gene expression profiling of the human maternal-fetal interface reveals dramatic changes between midgestation and term. Endocrinology. 2007;148:1059–1079. doi:10.1210/en.2006-0683. PMID:17170095
  • Bind M-A, Zanobetti A, Gasparrini A, et al. Effects of temperature and relative humidity on DNA methylation. Epidemiology. 2014;25:561–569. doi:10.1097/EDE.0000000000000120. PMID:24809956
  • Cox B, Martens E, Nemery B, et al. Impact of a stepwise introduction of smoke-free legislation on the rate of preterm births: analysis of routinely collected birth data. BMJ. 2013;346:f441. doi:10.1136/bmj.f441.
  • Janssen BG, Byun H-M, Gyselaers W, et al. Placental mitochondrial methylation and exposure to airborne particulate matter in the early life environment: An ENVIRONAGE birth cohort study. Epigenetics. 2015;10:536–544. doi:10.1080/15592294.2015.1048412. PMID:25996590
  • Lefebvre W, Degrawe B, Beckx C, et al. Presentation and evaluation of an integrated model chain to respond to traffic- and health-related policy questions. Environ Modell Software. 2013;40:160–170. doi:10.1016/j.envsoft.2012.09.003.
  • Lefebvre W, Vercauteren J, Schrooten L, et al. Validation of the MIMOSA-AURORA-IFDM model chain for policy support: Modeling concentrations of elemental carbon in Flanders. Atmos Environ. 2011;45:6705–6713. doi:10.1016/j.atmosenv.2011.08.033.
  • Maiheu B VB, Viaene P, De Ridde rK, et al. Identifying the best available large-scale concentration maps for air quality in Belgium. Mol, Belgium: Flemish Institute for Technological Research (VITO); 2013.
  • Hsu S-D, Tseng Y-T, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2014;42:D78–D85. doi:10.1093/nar/gkt1266. PMID:24304892
  • Vlachos IS, Kostoulas N, Vergoulis T, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res. 2012;40:W498–W504. doi:10.1093/nar/gks494. PMID:22649059
  • Vlachos IS, Paraskevopoulou MD, Karagkouni D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2014. doi:10.1093/nar/gku1215. PMID:25416803
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Stat Soc Series B. 1995;57:289–300.