1,555
Views
30
CrossRef citations to date
0
Altmetric
Research Paper

The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin

, , , &
Pages 415-425 | Received 04 Mar 2016, Accepted 24 Mar 2016, Published online: 12 May 2016

References

  • Bonisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res 2012; 40:10719-41; PMID:23002134; http://dx.doi.org/10.1093/nar/gks865
  • Ausió J, Abbott DW. The many tales of a tail: carboxyl-terminal tail heterogeneity specializes histone H2A variants for defined chromatin function. Biochemistry 2002; 41:5945-9; PMID:11993987; http://dx.doi.org/10.1021/bi020059d
  • Pehrson JR, Fried VA. MacroH2A, a core histone containing a large nonhistone region. Science 1992; 257:1398-400; PMID:1529340; http://dx.doi.org/10.1126/science.1529340
  • Costanzi C, Pehrson JR. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 1998; 393:599-601; PMID:9634239; http://dx.doi.org/10.1038/31275
  • Costanzi C, Pehrson JR. MACROH2A2, a new member of the MARCOH2A core histone family. J Biol Chem 2001; 276:21776-84; PMID:11262398; http://dx.doi.org/10.1074/jbc.M010919200
  • Richler C, Dhara SK, Wahrman J. Histone macroH2A1.2 is concentrated in the XY compartment of mammalian male meiotic nuclei. Cytogenet Cell Genet 2000; 89:118-20; PMID:10894952; http://dx.doi.org/10.1159/000015589
  • Rasmussen TP, Mastrangelo MA, Eden A, Pehrson JR, Jaenisch R. Dynamic relocalization of histone MacroH2A1 from centrosomes to inactive X chromosomes during X inactivation. J Cell Biol 2000; 150:1189-98; PMID:10974005; http://dx.doi.org/10.1083/jcb.150.5.1189
  • Mermoud JE, Costanzi C, Pehrson JR, Brockdorff N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J Cell Biol 1999; 147:1399-408; PMID:10613899; http://dx.doi.org/10.1083/jcb.147.7.1399
  • Zhang R, Poustovoitov MV, Ye X, Santos HA, Chen W, Daganzo SM, Erzberger JP, Serebriiskii IG, Canutescu AA, Dunbrack RL, et al. Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 2005; 8:19-30; PMID:15621527; http://dx.doi.org/10.1016/j.devcel.2004.10.019
  • Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev 2010; 24:21-32; PMID:20008927; http://dx.doi.org/10.1101/gad.1876110
  • Changolkar LN, Singh G, Cui K, Berletch JB, Zhao K, Disteche CM, Pehrson JR. Genome-wide distribution of macroH2A1 histone variants in mouse liver chromatin. Mol Cell Biol 2010; 30:5473-83; PMID:20937776; http://dx.doi.org/10.1128/MCB.00518-10
  • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev 2006; 20:3324-36; PMID:17158748; http://dx.doi.org/10.1101/gad.396106
  • Creppe C, Posavec M, Douet J, Buschbeck M. MacroH2A in stem cells: a story beyond gene repression. Epigenomics 2012; 4:221-7; PMID:22449192; http://dx.doi.org/10.2217/epi.12.8
  • Rasmussen TP, Huang T, Mastrangelo MA, Loring J, Panning B, Jaenisch R. Messenger RNAs encoding mouse histone macroH2A1 isoforms are expressed at similar levels in male and female cells and result from alternative splicing. Nucleic Acids Res 1999; 27:3685-9; PMID:10471737; http://dx.doi.org/10.1093/nar/27.18.3685
  • Pehrson JR, Costanzi C, Dharia C. Developmental and tissue expression patterns of histone macroH2A1 subtypes. J Cell Biochem 1997; 65:107-13; PMID:9138085; http://dx.doi.org/10.1002/(SICI)1097-4644(199704)65:1%3c107::AID-JCB11%3e3.0.CO;2-H
  • Araya I, Nardocci G, Morales J, Vera M, Molina A, Alvarez M. MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish. Epigenetics Chromatin 2010; 3:14; PMID:20670405; http://dx.doi.org/10.1186/1756-8935-3-14
  • Pehrson JR, Changolkar LN, Costanzi C, Leu NA. Mice without macroH2A histone variants. Mol Cell Biol 2014; 34:4523-33; PMID:25312643; http://dx.doi.org/10.1128/MCB.00794-14
  • Chang CC, Gao S, Sung LY, Corry GN, Ma Y, Nagy ZP, Tian XC, Rasmussen TP. Rapid elimination of the histone variant MacroH2A from somatic cell heterochromatin after nuclear transfer. Cell Reprogram 2010; 12:43-53; PMID:20132012; http://dx.doi.org/10.1089/cell.2009.0043
  • Creppe C, Janich P, Cantarino N, Noguera M, Valero V, Musulen E, Douet J, Posavec M, Martin-Caballero J, Sumoy L, et al. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol Cell Biol 2012; 32:1442-52; PMID:22331466; http://dx.doi.org/10.1128/MCB.06323-11
  • Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, Liu S, Costanzi C, Valle-Garcia D, Schaniel C, et al. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 2013; 4:1565; PMID:23463008; http://dx.doi.org/10.1038/ncomms2582
  • Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, Gutierrez A, Morey L, Guigo R, Lopez-Schier H, Di Croce L. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat Struct Mol Biol 2009; 16:1074-9; PMID:19734898; http://dx.doi.org/10.1038/nsmb.1665
  • Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. Developmental changes in histone macroH2A1-mediated gene regulation. Mol Cell Biol 2007; 27:2758-64; PMID:17242180; http://dx.doi.org/10.1128/MCB.02334-06
  • Monteiro FL, Baptista T, Amado F, Vitorino R, Jeronimo C, Helguero LA. Expression and functionality of histone H2A variants in cancer. Oncotarget 2014; 5:3428-43; PMID:25003966; http://dx.doi.org/10.18632/oncotarget.2007
  • Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP, Zonta E, Germann S, Mortada H, Villemin JP, et al. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat Struct Mol Biol 2012; 19:1139-46; PMID:23022728; http://dx.doi.org/10.1038/nsmb.2390
  • Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol Cell Biol 2011; 31:4244-55; PMID:21844227; http://dx.doi.org/10.1128/MCB.05244-11
  • Abbott DW, Laszczak M, Lewis JD, Su H, Moore SC, Hills M, Dimitrov S, Ausio J. Structural characterization of macroH2A containing chromatin. Biochemistry 2004; 43:1352-9; PMID:14756572; http://dx.doi.org/10.1021/bi035859i
  • Chakravarthy S, Luger K. The histone variant macro-H2A preferentially forms “hybrid nucleosomes”. J Biol Chem 2006; 281:25522-31; PMID:16803903; http://dx.doi.org/10.1074/jbc.M602258200
  • Angelov D, Molla A, Perche PY, Hans F, Cote J, Khochbin S, Bouvet P, Dimitrov S. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 2003; 11:1033-41; PMID:12718888; http://dx.doi.org/10.1016/S1097-2765(03)00100-X
  • Muthurajan UM, McBryant SJ, Lu X, Hansen JC, Luger K. The linker region of macroH2A promotes self-association of nucleosomal arrays. J Biol Chem 2011; 286:23852-64; PMID:21532035; http://dx.doi.org/10.1074/jbc.M111.244871
  • Chakravarthy S, Patel A, Bowman GD. The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome. Nucleic Acids Res 2012; 40:8285-95; PMID:22753032; http://dx.doi.org/10.1093/nar/gks645
  • Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K. Structural characterization of the histone variant macroH2A. Mol Cell Biol 2005; 25:7616-24; PMID:16107708; http://dx.doi.org/10.1128/MCB.25.17.7616-7624.2005
  • Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J Biol Chem 2007; 282:12851-9; PMID:17322296; http://dx.doi.org/10.1074/jbc.M610502200
  • Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harb Perspect Biol 2015; 7:a019364; PMID:25561719; http://dx.doi.org/10.1101/cshperspect.a019364
  • Talbert PB, Ahmad K, Almouzni G, Ausio J, Berger F, Bhalla PL, Bonner WM, Cande WZ, Chadwick BP, Chan SW, et al. A unified phylogeny-based nomenclature for histone variants. Epigenetics Chromatin 2012; 5:7; PMID:22650316; http://dx.doi.org/10.1186/1756-8935-5-7
  • Eirín-López JM, González-Romero R, Dryhurst D, Méndez J, Ausió J. Long-term evolution of histone families: old notions and new insights into their diversification mechanisms across eukaryotes. In: Pontarotti P, ed. Evolutionary Biology: Concept, Modeling, and Application. Berlin Heidelberg: Springer-Verlag, 2009:139-62; http://dx.doi.org/10.1007/978-3-642-00952-5_8
  • Gonzalez-Romero R, Ausio J, Mendez J, Eirin-Lopez JM. Early evolution of histone genes: prevalence of an 'orphon' H1 lineage in protostomes and birth-and-death process in the H2A family. J Mol Evol 2008; 66:505-18; PMID:18443735; http://dx.doi.org/10.1007/s00239-008-9109-1
  • Kasinsky H, Lewis J, Dacks J, Ausió J. Origin of H1 linker histones. FASEB J 2001; 15:34-42; PMID:11149891; http://dx.doi.org/10.1096/fj.00-0237rev
  • Gonzalez-Romero R, Rivera-Casas C, Frehlick LJ, Mendez J, Ausio J, Eirin-Lopez JM. Histone H2A (H2A.X and H2A.Z) variants in molluscs: molecular characterization and potential implications for chromatin dynamics. PLoS One 2012; 7:e30006; PMID:22253857; http://dx.doi.org/10.1371/journal.pone.0030006
  • Eirin-Lopez JM, Gonzalez-Romero R, Dryhurst D, Ishibashi T, Ausio J. The evolutionary differentiation of two histone H2A.Z variants in chordates (H2A.Z-1 and H2A.Z-2) is mediated by a stepwise mutation process that affects three amino acid residues. BMC Evol Biol 2009; 9:31; PMID:19193230; http://dx.doi.org/10.1186/1471-2148-9-31
  • Eirin-Lopez JM, Ausio J. Origin and evolution of chromosomal sperm proteins. Bioessays 2009; 31:1062-70; PMID:19708021; http://dx.doi.org/10.1002/bies.200900050
  • Lewis JD, Ausió J. Protamine-like proteins: evidence for a novel chromatin structure. Biochemistry and cell biology = Biochimie et biologie cellulaire 2002; 80:353-61; PMID:12123288; http://dx.doi.org/10.1139/o02-083
  • Avramova Z, Zalensky A, Tsanev R. Biochemical and ultrastructural study of the sperm chromatin from Mytilus galloprovincialis. Experimental cell research 1984; 152:231-9; PMID:6232144; http://dx.doi.org/10.1016/0014-4827(84)90248-9
  • Ishibashi T, Thambirajah AA, Ausio J. MeCP2 preferentially binds to methylated linker DNA in the absence of the terminal tail of histone H3 and independently of histone acetylation. FEBS letters 2008; 582:1157-62; PMID:18339321; http://dx.doi.org/10.1016/j.febslet.2008.03.005
  • Malik HS, Henikoff S. Phylogenomics of the nucleosome. Nat Struct Biol 2003; 10:882-91; PMID:14583738; http://dx.doi.org/10.1038/nsb996
  • Talbert PB, Henikoff S. Histone variants–ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 2010; 11:264-75; PMID:20197778; http://dx.doi.org/10.1038/nrm2861
  • Cheema MS, Ausio J. The Structural Determinants behind the Epigenetic Role of Histone Variants. Genes (Basel) 2015; 6:685-713; PMID:26213973; http://dx.doi.org/10.3390/genes6030685
  • Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997; 389:251-60; PMID:9305837; http://dx.doi.org/10.1038/38444
  • Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang BF. A phylogenomic investigation into the origin of metazoa. Mol Biol Evol 2008; 25:664-72; PMID:18184723; http://dx.doi.org/10.1093/molbev/msn006
  • Sebe-Pedros A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2011; 28:1241-54; PMID:21087945; http://dx.doi.org/10.1093/molbev/msq309
  • Dryhurst D, Ishibashi T, Rose KL, Eirin-Lopez JM, McDonald D, Silva-Moreno B, Veldhoen N, Helbing CC, Hendzel MJ, Shabanowitz J, et al. Characterization of the histone H2A.Z-1 and H2A.Z-2 isoforms in vertebrates. BMC Biol 2009; 7:86; PMID:20003410; http://dx.doi.org/10.1186/1741-7007-7-86
  • Bonisch C, Schneider K, Punzeler S, Wiedemann SM, Bielmeier C, Bocola M, Eberl HC, Kuegel W, Neumann J, Kremmer E, et al. H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization. Nucleic Acids Res 2012; 40(13):5951-64; PMID: 22467210; http://dx.doi.org/10.1093/nar/gks267
  • Turner JM, Mahadevaiah SK, Elliott DJ, Garchon HJ, Pehrson JR, Jaenisch R, Burgoyne PS. Meiotic sex chromosome inactivation in male mice with targeted disruptions of Xist. J Cell Sci 2002; 115:4097-105; PMID:12356914; http://dx.doi.org/10.1242/jcs.00111
  • Chang CC, Ma Y, Jacobs S, Tian XC, Yang X, Rasmussen TP. A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos. Dev Biol 2005; 278:367-80; PMID:15680357; http://dx.doi.org/10.1016/j.ydbio.2004.11.032
  • Castillo J, Amaral A, Azpiazu R, Vavouri T, Estanyol JM, Ballesca JL, Oliva R. Genomic and proteomic dissection and characterisation of the human sperm chromatin. Molecular human reproduction 2014; 20(11):1041-53; PMID:25193639; http://dx.doi.org/10.1093/molehr/gau079
  • Jemaa M, Morin N, Cavelier P, Cau J, Strub JM, Delsert C. Adult somatic progenitor cells and hematopoiesis in oysters. J Exp Biol 2014; 217:3067-77; PMID:24948634; http://dx.doi.org/10.1242/jeb.106575
  • Pasque V, Gillich A, Garrett N, Gurdon JB. Histone variant macroH2A confers resistance to nuclear reprogramming. Embo j 2011; 30:2373-87; PMID:21552206; http://dx.doi.org/10.1038/emboj.2011.144
  • Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JC. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J Cell Sci 2012; 125:6094-104; PMID:23077180; http://dx.doi.org/10.1242/jcs.113019
  • Barrero MJ, Sese B, Marti M, Izpisua Belmonte JC. Macro histone variants are critical for the differentiation of human pluripotent cells. J Biol Chem 2013; 288:16110-6; PMID:23595991; http://dx.doi.org/10.1074/jbc.M113.466144
  • Lewis JD, Abbott DW, Ausio J. A haploid affair: core histone transitions during spermatogenesis. Biochem Cell Biol 2003; 81:131-40; PMID:12897846; http://dx.doi.org/10.1139/o03-045
  • Mermoud JE, Tassin AM, Pehrson JR, Brockdorff N. Centrosomal association of histone macroH2A1.2 in embryonic stem cells and somatic cells. Exp Cell Res 2001; 268:245-51; PMID:11478850; http://dx.doi.org/10.1006/excr.2001.5277
  • Gamble MJ, Kraus WL. Multiple facets of the unique histone variant macroH2A: from genomics to cell biology. Cell Cycle 2010; 9:2568-74; PMID:20543561; http://dx.doi.org/10.4161/cc.9.13.12144
  • Maze I, Noh KM, Soshnev AA, Allis CD. Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 2014; 15:259-71; PMID:24614311; http://dx.doi.org/10.1038/nrg3673
  • Ausio J. Histone variants–the structure behind the function. Brief Funct Genomic Proteomic 2006; 5:228-43; PMID:16772274; http://dx.doi.org/10.1093/bfgp/ell020
  • Suarez-Ulloa V, Fernandez-Tajes J, Aguiar-Pulido V, Rivera-Casas C, Gonzalez-Romero R, Ausio J, Mendez J, Dorado J, Eirin-Lopez JM. The CHROMEVALOA database: a resource for the evaluation of Okadaic Acid contamination in the marine environment based on the chromatin-associated transcriptome of the mussel Mytilus galloprovincialis. Mar Drugs 2013; 11:830-41; PMID:23481679; http://dx.doi.org/10.3390/md11030830
  • Marino-Ramirez L, Levine KM, Morales M, Zhang S, Moreland RT, Baxevanis AD, Landsman D. The Histone Database: an integrated resource for histones and histone fold-containing proteins. Database (Oxford) 2011; 2011:bar048.
  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2013; 41:D36-42; PMID:23193287; http://dx.doi.org/10.1093/nar/gks1195
  • Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 1999; 41:95-8.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725-9; PMID:24132122; http://dx.doi.org/10.1093/molbev/mst197
  • Jones DT, Taylor WR, Thornton JM. The rapid generation of mutation data matrices from protein sequences. Comput Applic Biosci 1992; 8:275-82.
  • Ausió J, Moore SC. Reconstitution of chromatin complexes from high-performance liquid chromatography-purified histones. Methods (San Diego, Calif) 1998; 15:333-42; PMID:9740721; http://dx.doi.org/10.1006/meth.1998.0637
  • Ishibashi T, Dryhurst D, Rose KL, Shabanowitz J, Hunt DF, Ausio J. Acetylation of vertebrate H2A.Z and its effect on the structure of the nucleosome. Biochemistry 2009; 48:5007-17; PMID:19385636; http://dx.doi.org/10.1021/bi900196c
  • Thambirajah AA, Ng MK, Frehlick LJ, Li A, Serpa JJ, Petrotchenko EV, Silva-Moreno B, Missiaen KK, Borchers CH, Adam Hall J, et al. MeCP2 binds to nucleosome free (linker DNA) regions and to H3K9/H3K27 methylated nucleosomes in the brain. Nucleic acids research 2011; 40:2884-97; PMID:22144686; http://dx.doi.org/10.1093/nar/gkr1066
  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols 2015; 10:845-58; PMID:25950237; http://dx.doi.org/10.1038/nprot.2015.053

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.