3,036
Views
53
CrossRef citations to date
0
Altmetric
Research Paper

DNA methylome changes by estradiol benzoate and bisphenol A links early-life environmental exposures to prostate cancer risk

, , , , , , , , & , PhD show all
Pages 674-689 | Received 25 Apr 2016, Accepted 27 Jun 2016, Published online: 10 Sep 2016

References

  • Rubin BS, Bisphenol A. an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol 2011; 127:27-34; PMID:21605673; http://dx.doi.org/10.1016/j.jsbmb.2011.05.002
  • Seachrist DD, Bonk KW, Ho SM, Prins GS, Soto AM, Keri RA. A review of the carcinogenic potential of bisphenol A. Reprod Toxicol 2015; 59:167-82; PMID:26493093; http://dx.doi.org/10.1016/j.reprotox.2015.09.006
  • Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. EndocrRev 2009; 30:75-95; PMID:19074586; http://dx.doi.org/10.1210/er.2008-0021
  • Cavallaro M, Mariani J, Lancini C, Latorre E, Caccia R, Gullo F, Valotta M, DeBiasi S, Spinardi L, Ronchi A, et al. Impaired generation of mature neurons by neural stem cells from hypomorphic Sox2 mutants. Development 2008; 135:541-57; PMID:18171687; http://dx.doi.org/10.1242/dev.010801
  • Chen K, Fallen S, Abaan HO, Hayran M, Gonzalez C, Wodajo F, MacDonald T, Toretsky JA, Uren A. Wnt10b induces chemotaxis of osteosarcoma and correlates with reduced survival. Pediatric blood & cancer 2008; 51:349-55; PMID:18465804; http://dx.doi.org/10.1002/pbc.21595
  • Modugno F, Weissfeld JL, Trump DL, Zmuda JM, Shea P, Cauley JA, Ferrell RE. Allelic variants of aromatase and the androgen and estrogen receptors: toward a multigenic model of prostate cancer risk. Clin Cancer Res 2001; 7:3092-6; PMID:11595700
  • Otsubo T, Akiyama Y, Yanagihara K, Yuasa Y. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. Br J Cancer 2008; 98:824-31; PMID:18268498; http://dx.doi.org/10.1038/sj.bjc.6604193
  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect 2005; 113:391-5; PMID:15811827; http://dx.doi.org/10.1289/ehp.7534
  • Lam HM, Ho SM, Chen J, Medvedovic M, Tam NN. Bisphenol A Disrupts HNF4alpha-Regulated Gene Networks Linking to Prostate Preneoplasia and Immune Disruption in Noble Rats. Endocrinology 2016; 157:207-19; PMID:26496021; http://dx.doi.org/10.1210/en.2015-1363
  • Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PloS one 2014; 9:e90332; PMID:24594937; http://dx.doi.org/10.1371/journal.pone.0090332
  • Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transfer of bisphenol A across the human placenta. AmJObstetGynecol 2010; 202:393-7; PMID:20350650; http://dx.doi.org/10.1016/j.ajog.2010.01.025
  • Gerona RR, Woodruff TJ, Dickenson CA, Pan J, Schwartz JM, Sen S, Friesen MW, Fujimoto VY, Hunt PA. Bisphenol-A (BPA), BPA glucuronide, and BPA sulfate in midgestation umbilical cord serum in a northern and central California population. Environ Sci Technol 2013; 47:12477-85; PMID:23941471; http://dx.doi.org/10.1021/es402764d
  • Lee YJ, Ryu HY, Kim HK, Min CS, Lee JH, Kim E, Nam BH, Park JH, Jung JY, Jang DD, et al. Maternal and fetal exposure to bisphenol A in Korea. ReprodToxicol 2008; 25:413-9; PMID:18577445; http://dx.doi.org/10.1016/j.reprotox.2008.05.058
  • Padmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L, Tao L, Kannan K. Maternal bisphenol-A levels at delivery: a looming problem? JPerinatol 2008; 28:258-63; PMID:18273031; http://dx.doi.org/10.1038/sj.jp.7211913
  • Edginton AN, Ritter L. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environ Health Perspect 2009; 117:645-52; PMID:19440506; http://dx.doi.org/10.1289/ehp.0800073
  • Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, Watson CS, Zoeller RT, Belcher SM. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol 2007; 24:178-98; PMID:17628395; http://dx.doi.org/10.1016/j.reprotox.2007.05.010
  • Hu WY, Shi GB, Lam HM, Hu DP, Ho SM, Madueke IC, Kajdacsy-Balla A, Prins GS. Estrogen-initiated transformation of prostate epithelium derived from normal human prostate stem-progenitor cells. Endocrinology 2011; 152:2150-63; PMID:21427218; http://dx.doi.org/10.1210/en.2010-1377
  • Lau KM, Leav I, Ho SM. Rat estrogen receptor-alpha and -beta, and progesterone receptor mRNA expression in various prostatic lobes and microdissected normal and dysplastic epithelial tissues of the Noble rats. Endocrinology 1998; 139:424-7; PMID:9421443; http://dx.doi.org/10.1210/endo.139.1.5809#sthash.rMzyrNHt.dpuf
  • Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, et al. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 2014; 155:805-17; PMID:24424067; http://dx.doi.org/10.1210/en.2013-1955
  • Acconcia F, Pallottini V, Marino M. Molecular Mechanisms of Action of BPA. Dose-response 2015; 13:1559325815610582; PMID:26740804; http://dx.doi.org/10.1177/1559325815610582
  • Moriyama K, Tagami T, Akamizu T, Usui T, Saijo M, Kanamoto N, Hataya Y, Shimatsu A, Kuzuya H, Nakao K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J Clin Endocrinol Metab 2002; 87:5185-90; PMID:12414890; http://dx.doi.org/10.1210/jc.2002-020209
  • Lammoglia MA, Short RE, Bellows SE, Bellows RA, MacNeil MD, Hafs HD. Induced and synchronized estrus in cattle: dose titration of estradiol benzoate in peripubertal heifers and postpartum cows after treatment with an intravaginal progesterone-releasing insert and prostaglandin F2alpha. J Anim Sci 1998; 76:1662-70; PMID:9655587; http://dx.doi.org/10.2527/1998.7661662x
  • Matthews J, Celius T, Halgren R, Zacharewski T. Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol 2000; 74:223-34; PMID:11162928; http://dx.doi.org/10.1016/S0960-0760(00)00126-6
  • Toyama Y, Yuasa S. Effects of neonatal administration of 17beta-estradiol, beta-estradiol 3-benzoate, or bisphenol A on mouse and rat spermatogenesis. Reprod Toxicol 2004; 19:181-8; PMID:15501383; http://dx.doi.org/10.1016/j.reprotox.2004.08.003
  • Ho SM, Tang WY, Belmonte de FJ, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006; 66:5624-32; PMID:16740699; http://dx.doi.org/10.1158/0008-5472.CAN-06-0516
  • Prins GS, Birch L, Habermann H, Chang WY, Tebeau C, Putz O, Bieberich C. Influence of neonatal estrogens on rat prostate development. Reprod Fertil Dev 2001; 13:241-52; PMID:11800163; http://dx.doi.org/10.1071/RD00107
  • Prins GS, Ho SM. Early-life estrogens and prostate cancer in an animal model. J Dev Orig Health Dis 2010; 1:365-70; PMID:24795802; http://dx.doi.org/10.1017/S2040174410000577
  • Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 2010; 88:938-44; PMID:20568270; http://dx.doi.org/10.1002/bdra.20685
  • Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. J Steroid Biochem Mol Biol 2014; 141:160-70; PMID:24533973; http://dx.doi.org/10.1016/j.jsbmb.2014.02.002
  • Ho SM, Cheong A, Lam HM, Hu WY, Shi GB, Zhu X, Chen J, Zhang X, Medvedovic M, Leung YK, et al. Exposure of Human Prostaspheres to Bisphenol A Epigenetically Regulates SNORD Family Noncoding RNAs via Histone Modification. Endocrinology 2015; 156:3984-95; PMID:26248216; http://dx.doi.org/10.1210/en.2015-1067
  • Nahar MS, Liao C, Kannan K, Harris C, Dolinoy DC. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere 2015; 124:54-60; PMID:25434263; http://dx.doi.org/10.1016/j.chemosphere.2014.10.071
  • Tang WY, Morey LM, Cheung YY, Birch L, Prins GS, Ho SM. Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology 2012; 153:42-55; PMID:22109888; http://dx.doi.org/10.1210/en.2011-1308
  • Wong RL, Wang Q, Trevino LS, Bosland MC, Chen J, Medvedovic M, Prins GS, Kannan K, Ho SM, Walker CL. Identification of secretaglobin Scgb2a1 as a target for developmental reprogramming by BPA in the rat prostate. Epigenetics 2015; 10:127-34; PMID:25612011; http://dx.doi.org/10.1080/15592294.2015.1009768
  • Prins GS, Ye SH, Birch L, Ho SM, Kannan K. Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reprod Toxicol 2011; 31:1-9; PMID:20887781; http://dx.doi.org/10.1016/j.reprotox.2010.09.009
  • Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male 2002; 5:98-102; PMID:12198740; http://dx.doi.org/10.1080/tam.5.2.98.102
  • Walker CL, Ho SM. Developmental reprogramming of cancer susceptibility. Nat Rev Cancer 2012; 12:479-86; PMID:22695395; http://dx.doi.org/10.1038/nrc3220
  • Li LC. Designing PCR primer for DNA methylation mapping. Methods Mol Biol 2007; 402:371-84; PMID:17951806; http://dx.doi.org/10.1007/978-1-59745-528-2
  • Chang SM, Chung LW. Interaction between prostatic fibroblast and epithelial cells in culture: role of androgen. Endocrinology 1989; 125:2719-27; PMID:2792005; http://dx.doi.org/10.1210/endo-125-5-2719
  • Ho SM, Leav I, Damassa D, Kwan PW, Merk FB, Seto HS. Testosterone-mediated increase in 5 alpha-dihydrotestosterone content, nuclear androgen receptor levels, and cell division in an androgen-independent prostate carcinoma of Noble rats. Cancer Res 1988; 48:609-14; PMID:3257169
  • Albertsen PC, Hanley JA, Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. Jama 2005; 293:2095-101; PMID:15870412; http://dx.doi.org/10.1001/jama.293.17.2095
  • Prins GS, Huang L, Birch L, Pu Y. The role of estrogens in normal and abnormal development of the prostate gland. Ann N Y Acad Sci 2006; 1089:1-13; PMID:17261752; http://dx.doi.org/10.1196/annals.1386.009
  • Ghosh PM, Malik SN, Bedolla RG, Wang Y, Mikhailova M, Prihoda TJ, Troyer DA, Kreisberg JI. Signal transduction pathways in androgen-dependent and -independent prostate cancer cell proliferation. Endocrine-related Cancer 2005; 12:119-34; PMID:15788644; http://dx.doi.org/10.1677/erc.1.00835
  • Liao Y, Grobholz R, Abel U, Trojan L, Michel MS, Angel P, Mayer D. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int J Cancer 2003; 107:676-80; PMID:14520710; http://dx.doi.org/10.1002/ijc.11471
  • Sanjeev S, MacLennan GT, Hartman DJ, Fu P, Resnick MI, and Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. International Journal of Cancer 2007; 121(7):1424-1432; PMID:17551921; http://dx.doi.org/10.1002/ijc.22862
  • Lin HK, Yeh S, Kang HY, Chang C. Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci U S A 2001; 98:7200-5; PMID:11404460; http://dx.doi.org/10.1073/pnas.121173298
  • Price DT, Della Rocca G, Guo C, Ballo MS, Schwinn DA, Luttrell LM. Activation of extracellular signal-regulated kinase in human prostate cancer. J Urol 1999; 162:1537-42; PMID:10492251; http://dx.doi.org/10.1016/S0022-5347(05)68354-1
  • Gao H, Ouyang X, Banach-Petrosky WA, Gerald WL, Shen MM, Abate-Shen C. Combinatorial activities of Akt and B-Raf/Erk signaling in a mouse model of androgen-independent prostate cancer. Proc Natl Acad Sci U S A 2006; 103:14477-82; PMID:16973750; http://dx.doi.org/10.1073/pnas.0606836103
  • Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Liu Y, Lv D, Liu CH, Tan X, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 2011; 3:230-8; PMID:21415100; http://dx.doi.org/10.1093/jmcb/mjr002
  • Kregel S, Kiriluk KJ, Rosen AM, Cai Y, Reyes EE, Otto KB, Tom W, Paner GP, Szmulewitz RZ, Vander Griend DJ. Sox2 is an androgen receptor-repressed gene that promotes castration-resistant prostate cancer. PloS one 2013; 8:e53701; PMID:23326489; http://dx.doi.org/10.1371/journal.pone.0053701
  • Miranda-Carboni GA, Krum SA, Yee K, Nava M, Deng QE, Pervin S, Collado-Hidalgo A, Galic Z, Zack JA, Nakayama K, et al. A functional link between Wnt signaling and SKP2-independent p27 turnover in mammary tumors. Gen Dev 2008; 22:3121-34; PMID:19056892; http://dx.doi.org/10.1101/gad.1692808
  • Li X, Xu Y, Chen Y, Chen S, Jia X, Sun T, Liu Y, Li X, Xiang R, Li N. SOX2 promotes tumor metastasis by stimulating epithelial-to-mesenchymal transition via regulation of WNT/beta-catenin signal network. Cancer Lett 2013; 336:379-89; PMID:23545177; http://dx.doi.org/10.1016/j.canlet.2013.03.027
  • Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C, Giebel J, Walther R. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J 2008; 275:5703-13; PMID:18959755; http://dx.doi.org/10.1111/j.1742-4658.2008.06697.x
  • Tennstedt P, Bolch C, Strobel G, Minner S, Burkhardt L, Grob T, Masser S, Sauter G, Schlomm T, Simon R. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol 2014; 44:609-15; PMID:24317684; http://dx.doi.org/10.3892/ijo.2013.2200
  • van Duin M, van Marion R, Vissers K, Watson JE, van Weerden WM, Schroder FH, Hop WC, van der Kwast TH, Collins C, van Dekken H. High-resolution array comparative genomic hybridization of chromosome arm 8q: evaluation of genetic progression markers for prostate cancer. Genes Chromosomes Cancer 2005; 44:438-49; PMID:16130124; http://dx.doi.org/10.1002/gcc.20259
  • Qi H, Fillion C, Labrie Y, Grenier J, Fournier A, Berger L, El-Alfy M, Labrie C. AIbZIP, a novel bZIP gene located on chromosome 1q21.3 that is highly expressed in prostate tumors and of which the expression is up-regulated by androgens in LNCaP human prostate cancer cells. Cancer Res 2002; 62:721-33; PMID:11830526
  • Schmidt U, Fuessel S, Koch R, Baretton GB, Lohse A, Tomasetti S, Unversucht S, Froehner M, Wirth MP, Meye A. Quantitative multi-gene expression profiling of primary prostate cancer. Prostate 2006; 66:1521-34; PMID:16921506; http://dx.doi.org/10.1002/pros.20490
  • Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, Kristiansen G, Hsieh JC, Hofstaedter F, Hartmann A, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003; 201:204-12; PMID:14517837; http://dx.doi.org/10.1002/path.1449
  • Prins GS, Calderon-Gierszal EL, Hu WY. Stem Cells as Hormone Targets That Lead to Increased Cancer Susceptibility. Endocrinology 2015; 156:3451-7; PMID:26241068; http://dx.doi.org/10.1210/en.2015-1357
  • Kim JW, Kim ST, Turner AR, Young T, Smith S, Liu W, Lindberg J, Egevad L, Gronberg H, Isaacs WB, et al. Identification of new differentially methylated genes that have potential functional consequences in prostate cancer. PloS one 2012; 7:e48455; PMID:23119026; http://dx.doi.org/10.1371/journal.pone.0048455
  • Kato H, Araki T, Itoyama Y, Kogure K, Kato K. An immunohistochemical study of heat shock protein-27 in the hippocampus in a gerbil model of cerebral ischemia and ischemic tolerance. Neuroscience 1995; 68:65-71; PMID:7477936; http://dx.doi.org/10.1016/0306-4522(95)00141-5
  • Alonso-Magdalena P, Ropero AB, Soriano S, Garcia-Arevalo M, Ripoll C, Fuentes E, Quesada I, Nadal A. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol 2012; 355:201-7; PMID:22227557; http://dx.doi.org/10.1016/j.mce.2011.12.012
  • Chan QK, Lam HM, Ng CF, Lee AY, Chan ES, Ng HK, Ho SM, Lau KM. Activation of GPR30 inhibits the growth of prostate cancer cells through sustained activation of Erk1/2, c-jun/c-fos-dependent upregulation of p21, and induction of G(2) cell-cycle arrest. Cell Death Differ 2010; 17:1511-23; PMID:20203690; http://dx.doi.org/10.1038/cdd.2010.20
  • Krishnan K, Gagne M, Nong A, Aylward LL, Hays SM. Biomonitoring Equivalents for bisphenol A (BPA). Regul Toxicol Pharmacol 2010; 58:18-24; PMID:20541576; http://dx.doi.org/10.1016/j.yrtph.2010.06.005
  • Prins GS. Neonatal estrogen exposure induces lobe-specific alterations in adult rat prostate androgen receptor expression. Endocrinology 1992; 130:3703-14; PMID:1597166; http://dx.doi.org/10.1210/en.130.6.3703
  • Draganov DI, Markham DA, Beyer D, Waechter JM, Jr., Dimond SS, Budinsky RA, Shiotsuka RN, Snyder SA, Ehman KD, Hentges SG. Extensive metabolism and route-dependent pharmacokinetics of bisphenol A (BPA) in neonatal mice following oral or subcutaneous administration. Toxicology 2015; 333:168-78; PMID:25929835; http://dx.doi.org/10.1016/j.tox.2015.04.012
  • Rauch T, Li H, Wu X, Pfeifer GP. MIRA-assisted microarray analysis, a new technology for the determination of DNA methylation patterns, identifies frequent methylation of homeodomain-containing genes in lung cancer cells. Cancer Res 2006; 66:7939-47; PMID:16912168; http://dx.doi.org/10.1158/0008-5472.CAN-06-1888
  • Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PloS one 2010; 5:e13100; PMID:20927350; http://dx.doi.org/10.1371/journal.pone.0013100
  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, et al. Bioconductor: open software development for computational biology and bioinformatics. Gen Biol 2004; 5:R80; PMID:15461798; http://dx.doi.org/10.1186/gb-2004-5-10-r80
  • Newton MA, Quintana FA, den Boon JA. Random set methods identify distinct aspects of the enrichment signal in gene-set analysis. AnnApplStat 2007; 1:85-106; http://dx.doi.org/doi:10.1214/07-AOAS104
  • Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics 2005; 21:4067-8; PMID:16141249; http://dx.doi.org/10.1093/bioinformatics/bti652
  • van Belkum A, Melles DC, Nouwen J, van Leeuwen WB, van Wamel W, Vos MC, Wertheim HF, Verbrugh HA. Co-evolutionary aspects of human colonisation and infection by Staphylococcus aureus. Infect Genet Evol 2009; 9:32-47; PMID:19000784; http://dx.doi.org/10.1016/j.meegid.2008.09.012
  • Liu H, Wei L, Tao Q, Deng H, Ming M, Xu P, Le W. Decreased NURR1 and PITX3 gene expression in Chinese patients with Parkinson's disease. Eur J Neurol 2012; 19:870-5; PMID:22309633; http://dx.doi.org/10.1111/j.1468-1331.2011.03644.x
  • Lei Z, Jiang Y, Li T, Zhu J, Zeng S. Signaling of glial cell line-derived neurotrophic factor and its receptor GFRalpha1 induce Nurr1 and Pitx3 to promote survival of grafted midbrain-derived neural stem cells in a rat model of Parkinson disease. J Neuropathol Exp Neurol 2011; 70:736-47; PMID:21865882; http://dx.doi.org/10.1097/NEN.0b013e31822830e5
  • Chen H, Wang Y, Xue F. Expression and the clinical significance of Wnt10a and Wnt10b in endometrial cancer are associated with the Wnt/beta-catenin pathway. Oncol Rep 2013; 29:507-14; PMID:23135473; http://dx.doi.org/10.3892/or.2012.2126
  • Ouji Y, Nakamura-Uchiyama F, Yoshikawa M. Canonical Wnts, specifically Wnt-10b, show ability to maintain dermal papilla cells. Biochem Biophys Res Commun 2013; 438:493-9; PMID:23916705; http://dx.doi.org/10.1016/j.bbrc.2013.07.108
  • Wend P, Runke S, Wend K, Anchondo B, Yesayan M, Jardon M, Hardie N, Loddenkemper C, Ulasov I, Lesniak MS, et al. WNT10B/beta-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer. EMBO Mol Med 2013; 5:264-79; PMID:23307470; http://dx.doi.org/10.1002/emmm.201201320
  • Thiele S, Rauner M, Goettsch C, Rachner TD, Benad P, Fuessel S, Erdmann K, Hamann C, Baretton GB, Wirth MP, et al. Expression profile of WNT molecules in prostate cancer and its regulation by aminobisphosphonates. J Cell Biochem 2011; 112:1593-600; PMID:21344486; http://dx.doi.org/10.1002/jcb.23070
  • Calderon-Gierszal EL, Prins GS. Directed Differentiation of Human Embryonic Stem Cells into Prostate Organoids In Vitro and its Perturbation by Low-Dose Bisphenol A Exposure. PloS one 2015; 10:e0133238; PMID:26222054; http://dx.doi.org/10.1371/journal.pone.0133238
  • Golestaneh N, Beauchamp E, Fallen S, Kokkinaki M, Uren A, Dym M. Wnt signaling promotes proliferation and stemness regulation of spermatogonial stem/progenitor cells. Reproduction 2009; 138:151-62; PMID:19419993; http://dx.doi.org/10.1530/REP-08-0510
  • Gonez LJ, Naselli G, Banakh I, Niwa H, Harrison LC. Pancreatic expression and mitochondrial localization of the progestin-adipoQ receptor PAQR10. Mol Med 2008; 14:697-704; PMID:18769639; http://dx.doi.org/10.2119/2008-00072.Gonez
  • Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, Delatte B, Caauwe A, Lenglez S, Nkusi E, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 2014; 511:246-50; PMID:24909994; http://dx.doi.org/10.1038/nature13305
  • Graham V, Khudyakov J, Ellis P, Pevny L. SOX2 functions to maintain neural progenitor identity. Neuron 2003; 39:749-65; PMID:12948443; http://dx.doi.org/10.1016/S0896-6273(03)00497-5
  • Schoenhals M, Kassambara A, De Vos J, Hose D, Moreaux J, Klein B. Embryonic stem cell markers expression in cancers. Biochem Biophys Res Commun 2009; 383:157-62; PMID:19268426; http://dx.doi.org/10.1016/j.bbrc.2009.02.156
  • Fernandez-Vega I, Garcia-Suarez O, Garcia B, Crespo A, Astudillo A, Quiros LM. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character. BMC Cancer 2015; 15:742; PMID:26482785; http://dx.doi.org/10.1186/s12885-015-1724-9
  • Lu Y, Futtner C, Rock JR, Xu X, Whitworth W, Hogan BL, Onaitis MW. Evidence that SOX2 overexpression is oncogenic in the lung. PloS one 2010; 5:e11022; PMID:20548776; http://dx.doi.org/10.1371/journal.pone.0011022
  • Luo W, Li S, Peng B, Ye Y, Deng X, Yao K. Embryonic stem cells markers SOX2, OCT4 and Nanog expression and their correlations with epithelial-mesenchymal transition in nasopharyngeal carcinoma. PloS one 2013; 8:e56324; PMID:23424657; http://dx.doi.org/10.1371/journal.pone.0056324
  • Rodriguez-Pinilla SM, Sarrio D, Moreno-Bueno G, Rodriguez-Gil Y, Martinez MA, Hernandez L, Hardisson D, Reis-Filho JS, Palacios J. Sox2: a possible driver of the basal-like phenotype in sporadic breast cancer. Modern Pathol 2007; 20:474-81; PMID:17334350; http://dx.doi.org/10.1038/modpathol.3800760
  • Kopp JL, Ormsbee BD, Desler M, Rizzino A. Small increases in the level of Sox2 trigger the differentiation of mouse embryonic stem cells. Stem cells 2008; 26:903-11; PMID:18238855; http://dx.doi.org/10.1634/stemcells.2007-0951
  • Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A. Distinct functions of Sox2 control self-renewal and differentiation in the osteoblast lineage. Mol Cell Biol 2011; 31:4593-608; PMID:21930787; http://dx.doi.org/10.1128/MCB.05798-11
  • Wang R, He H, Sun X, Xu J, Marshall FF, Zhau H, Chung LW, Fu H, He D. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins. Biochem Biophys Res Commun 2009; 389:455-60; PMID:19732746; http://dx.doi.org/10.1016/j.bbrc.2009.08.165
  • Bian S, Akyuz N, Bernreuther C, Loers G, Laczynska E, Jakovcevski I, Schachner M. Dermatan sulfotransferase Chst14/D4st1, but not chondroitin sulfotransferase Chst11/C4st1, regulates proliferation and neurogenesis of neural progenitor cells. J Cell Sci 2011; 124:4051-63; PMID:22159417; http://dx.doi.org/10.1242/jcs.088120
  • Lewis JD, Payton LA, Whitford JG, Byrne JA, Smith DI, Yang L, Bright RK. Induction of tumorigenesis and metastasis by the murine orthologue of tumor protein D52. Mol Cancer Res 2007; 5:133-44; PMID:17314271; http://dx.doi.org/10.1158/1541-7786.MCR-06-0245
  • Wang R, Xu J, Saramaki O, Visakorpi T, Sutherland WM, Zhou J, Sen B, Lim SD, Mabjeesh N, Amin M, et al. PrLZ, a novel prostate-specific and androgen-responsive gene of the TPD52 family, amplified in chromosome 8q21.1 and overexpressed in human prostate cancer. Cancer Res 2004; 64:1589-94; PMID:14996714; http://dx.doi.org/10.1158/0008-5472.CAN-03-3331
  • Ross AE, Marchionni L, Vuica-Ross M, Cheadle C, Fan J, Berman DM, Schaeffer EM. Gene expression pathways of high grade localized prostate cancer. Prostate 2011; 71:1568-77; PMID:21360566; http://dx.doi.org/10.1002/pros.21373
  • Bismar TA, Demichelis F, Riva A, Kim R, Varambally S, He L, Kutok J, Aster JC, Tang J, Kuefer R, et al. Defining aggressive prostate cancer using a 12-gene model. Neoplasia 2006; 8:59-68; PMID:16533427; http://dx.doi.org/10.1593/neo.05664
  • Byrne JA, Balleine RL, Schoenberg Fejzo M, Mercieca J, Chiew YE, Livnat Y, St Heaps L, Peters GB, Byth K, Karlan BY, et al. Tumor protein D52 (TPD52) is overexpressed and a gene amplification target in ovarian cancer. Int J Cancer 2005; 117:1049-54; PMID:15986428; http://dx.doi.org/10.1002/ijc.21250
  • Alagaratnam S, Hardy JR, Lothe RA, Skotheim RI, Byrne JA. TPD52, a candidate gene from genomic studies, is overexpressed in testicular germ cell tumours. Mol Cell Endocrinol 2009; 306:75-80; PMID:19041365; http://dx.doi.org/10.1016/j.mce.2008.10.043
  • Takeda T, Tezuka Y, Horiuchi M, Hosono K, Iida K, Hatakeyama D, Miyaki S, Kunisada T, Shibata T, Tezuka K. Characterization of dental pulp stem cells of human tooth germs. J Dental Res 2008; 87:676-81; PMID:18573990; http://dx.doi.org/10.1177/154405910808700716
  • Ben Aicha S, Lessard J, Pelletier M, Fournier A, Calvo E, Labrie C. Transcriptional profiling of genes that are regulated by the endoplasmic reticulum-bound transcription factor AIbZIP/CREB3L4 in prostate cells. Physiol Genomics 2007; 31:295-305; PMID:17712038; http://dx.doi.org/10.1152/physiolgenomics.00097.2007
  • Adham IM, Eck TJ, Mierau K, Muller N, Sallam MA, Paprotta I, Schubert S, Hoyer-Fender S, Engel W. Reduction of spermatogenesis but not fertility in Creb3l4-deficient mice. Mol Cell Biol 2005; 25:7657-64; PMID:16107712; http://dx.doi.org/10.1128/MCB.25.17.7657-7664.2005