3,299
Views
46
CrossRef citations to date
0
Altmetric
Research Paper

Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression

, , , , , & show all
Pages 123-138 | Received 17 Oct 2016, Accepted 21 Nov 2016, Published online: 31 Jan 2017

References

  • Kriaucionis S, Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009; 324:929-30; PMID:19372393; http://dx.doi.org/10.1126/science.1169786
  • Lister R, Mukamel EA, Nery JR, Urich M, Puddifoot CA, Johnson ND, Lucero J, Huang Y, Dwork AJ, Schultz MD, et al. Global epigenomic reconfiguration during mammalian brain development. Science 2013; 341:1237905; PMID:23828890; http://dx.doi.org/10.1126/science.1237905
  • Green BB, Houseman EA, Johnson KC, Guerin DJ, Armstrong DA, Christensen BC, Marsit CJ. Hydroxymethylation is uniquely distributed within term placenta, and is associated with gene expression. Faseb J 2016; 30:2874-84; PMID:27118675; http://dx.doi.org/10.1096/fj.201600310R
  • Tsagaratou A, Aijo T, Lio CW, Yue X, Huang Y, Jacobsen SE, Lahdesmaki H, Rao A. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc Natl Acad Sci U S A 2014; 111:E3306-15; PMID:25071199; http://dx.doi.org/10.1073/pnas.1412327111
  • Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev 2016; 30:733-50; PMID:27036965; http://dx.doi.org/10.1101/gad.276568.115
  • Globisch D, Munzel M, Muller M, Michalakis S, Wagner M, Koch S, Bruckl T, Biel M, Carell T. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PloS one 2011; 5:e15367; PMID:21203455; http://dx.doi.org/10.1371/journal.pone.0015367
  • Nestor CE, Ottaviano R, Reddington J, Sproul D, Reinhardt D, Dunican D, Katz E, Dixon JM, Harrison DJ, Meehan RR. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes. Gen Res 2012; 22:467-77; PMID:22106369; http://dx.doi.org/10.1101/gr.126417.111
  • Ehrlich M, Gama-Sosa M, Huang L-H, Midgett RM, Kuo KC, McCune RA, Gehrke C. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues or cells. Nucleic Acids Res 1982; 10:2709-21; PMID:7079182; http://dx.doi.org/10.1093/nar/10.8.2709
  • Pang AP, Sugai C, Maunakea AK. High-throughput sequencing offers new insights into 5-hydroxymethylcytosine. Biomol Concepts 2016; 7:169-78; PMID:27356236; http://dx.doi.org/10.1515/bmc-2016-0011
  • Gross JA, Pacis A, Chen GG, Barreiro LB, Ernst C, Turecki G. Characterizing 5-hydroxymethylcytosine in human prefrontal cortex at single base resolution. BMC genomics 2015; 16:672; PMID:26334641; http://dx.doi.org/10.1186/s12864-015-1875-8
  • Wen L, Li X, Yan L, Tan Y, Li R, Zhao Y, Wang Y, Xie J, Zhang Y, Song C, et al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain. Genome Biol 2014; 15:R49; PMID:24594098; http://dx.doi.org/10.1186/gb-2014-15-3-r49
  • Neri F, Incarnato D, Krepelova A, Rapelli S, Pagnani A, Zecchina R, Parlato C, Oliviero S. Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells. Genome Biol 2013; 14:R91; PMID:23987249; http://dx.doi.org/10.1186/gb-2013-14-8-r91
  • Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trend Gen: TIG 2015; 31:274-80; PMID:25837375; http://dx.doi.org/10.1016/j.tig.2015.03.002
  • Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, Bird A. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Gen Res 2011; 21:1074-86; PMID:21628449; http://dx.doi.org/10.1101/gr.118703.110
  • Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK. On the presence and role of human gene-body DNA methylation. Oncotarget 2012; 3:462-74; PMID:22577155; http://dx.doi.org/10.18632/oncotarget.497
  • Booth MJ, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012; 336:934-7; PMID:22539555; http://dx.doi.org/10.1126/science.1220671
  • Ehrlich M, Ehrlich KC. DNA cytosine methylation and hydroxymethylation at the borders. Epigenomics 2014; 6:563-6; PMID:25531248; http://dx.doi.org/10.2217/epi.14.48
  • Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA, et al. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Molecular cell 2014; 56:286-97; PMID:25263596; http://dx.doi.org/10.1016/j.molcel.2014.08.026
  • Blattler A, Yao L, Witt H, Guo Y, Nicolet CM, Berman BP, Farnham PJ. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol 2014; 15:469; PMID:25239471; http://dx.doi.org/10.1186/s13059-014-0469-0
  • Ehrlich KC, Paterson HL, Lacey M, Ehrlich M. DNA hypomethylation in intragenic and intergenic enhancer chromatin of muscle-specific genes usually correlates with their expression. Yale J Biol Med 2016; PMID:28018137;
  • Majmundar AJ, Skuli N, Mesquita RC, Kim MN, Yodh AG, Nguyen-McCarty M, Simon MC. O(2) regulates skeletal muscle progenitor differentiation through phosphatidylinositol 3-kinase/AKT signaling. Mol Cell Biol 2012; 32:36-49; PMID:22006022; http://dx.doi.org/10.1128/MCB.05857-11
  • Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A, Ploumakis A, Ghesquiere B, Van Dyck L, Boeckx B, Schoonjans L, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 2016; 537:63-8; PMID:27533040; http://dx.doi.org/10.1038/nature19081
  • Tsumagari K, Baribault C, Terragni J, Varley KE, Gertz J, Pradhan S, Baddoo M, Crain CM, Song L, Crawford GE, et al. Early de novo DNA methylation and prolonged demethylation in the muscle lineage. Epigenetics 2013; 8:317-32; PMID:23417056; http://dx.doi.org/10.4161/epi.23989
  • Lacey MR, Baribault C, Ehrlich M. Modeling, simulation and analysis of methylation profiles from reduced representation bisulfite sequencing experiments. Stat Appl Genet Mol Biol 2013; 12:723-42; PMID:24163200; http://dx.doi.org/10.1515/sagmb-2013-0027
  • Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, Song L, Crawford GE, Pradhan S, Lacey M, et al. DNA methylation and differentiation: HOX genes in muscle cells. Epigen Chromatin 2013; 6:25; PMID:23916067; http://dx.doi.org/10.1186/1756-8935-6-25
  • Chen K, Zhang J, Guo Z, Ma Q, Xu Z, Zhou Y, Xu Z, Li Z, Liu Y, Ye X, et al. Loss of 5-hydroxymethylcytosine is linked to gene body hypermethylation in kidney cancer. Cell Res 2016; 26:103-18; PMID:26680004; http://dx.doi.org/10.1038/cr.2015.150
  • Illingworth RS, Gruenewald-Schneider U, De Sousa D, Webb S, Merusi C, Kerr AR, James KD, Smith C, Walker R, Andrews R, et al. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome. Nucleic Acids Res 2015; 43:732-44; PMID:25572316; http://dx.doi.org/10.1093/nar/gku1305
  • Song Q, Decato B, Hong EE, Zhou M, Fang F, Qu J, Garvin T, Kessler M, Zhou J, Smith AD. A reference methylome database and analysis pipeline to facilitate integrative and comparative epigenomics. PloS One 2013; 8:e81148; PMID:24324667; http://dx.doi.org/10.1371/journal.pone.0081148
  • Randhawa R, Cohen P. The role of the insulin-like growth factor system in prenatal growth. Mol Genet Metabol 2005; 86:84-90; PMID:16165387; http://dx.doi.org/10.1016/j.ymgme.2005.07.028
  • The GTex Consortium. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 2015; 348:648-60; PMID:25954001; http://dx.doi.org/10.1126/science.1262110
  • Stelzer G, Rosen N, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, Stein TI, Nudel R, Lieder I, Mazor Y, et al. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016; 54:1.30.1-1..3; PMID:27322403; http://dx.doi.org/10.1002/cpbi.5
  • Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC, Gehrke CW, Ehrlich M. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 1983; 11:6883-94; PMID:6314264; http://dx.doi.org/10.1093/nar/11.19.6883
  • Benayoun BA, Pollina EA, Ucar D, Mahmoudi S, Karra K, Wong ED, Devarajan K, Daugherty AC, Kundaje AB, Mancini E, et al. H3K4me3 breadth is linked to cell identity and transcriptional consistency. Cell 2014; 158:673-88; PMID:25083876; http://dx.doi.org/10.1016/j.cell.2014.06.027
  • L'Honore A, Drouin J, Buckingham M, Montarras D. Pitx2 and Pitx3 transcription factors: two key regulators of the redox state in adult skeletal muscle stem cells and muscle regeneration. Free Radic Biol Med 2014; 75 Suppl 1:S37; PMID:26461356; http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.781
  • McMinn J, Wei M, Sadovsky Y, Thaker HM, Tycko B. Imprinting of PEG1/MEST isoform 2 in human placenta. Placenta 2006; 27:119-26; PMID:16338457; http://dx.doi.org/10.1016/j.placenta.2004.12.003
  • Anderson SB, Goldberg AL, Whitman M. Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 2008; 283:7027-35; PMID:18175804; http://dx.doi.org/10.1074/jbc.M706678200
  • Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler A, M., Haussler D. The human genome browser at UCSC. Genome Res 2002; 12:996-1006; PMID:12045153
  • L'Honore A, Commere PH, Ouimette JF, Montarras D, Drouin J, Buckingham M. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Dev Cell 2014; 29:392-405; PMID:24871946; http://dx.doi.org/10.1016/j.devcel.2014.04.006
  • Knopp P, Figeac N, Fortier M, Moyle L, Zammit PS. Pitx genes are redeployed in adult myogenesis where they can act to promote myogenic differentiation in muscle satellite cells. Dev Biol 2013; 377:293-304; PMID:23438814; http://dx.doi.org/10.1016/j.ydbio.2013.02.011
  • Jin C, Lu Y, Jelinek J, Liang S, Estecio MR, Barton MC, Issa JP. TET1 is a maintenance DNA demethylase that prevents methylation spreading in differentiated cells. Nucleic Acids Res 2014; 42:6956-71; PMID:24875481; http://dx.doi.org/10.1093/nar/gku372
  • Wiehle L, Raddatz G, Musch T, Dawlaty MM, Jaenisch R, Lyko F, Breiling A. Tet1 and Tet2 protect DNA methylation canyons against hypermethylation. Mol Cell Biol 2016; 36:452-61; PMID:26598602; http://dx.doi.org/10.1128/MCB.00587-15
  • Hartung T, Zhang L, Kanwar R, Khrebtukova I, Reinhardt M, Wang C, Therneau TM, Banck MS, Schroth GP, Beutler AS. Diametrically opposite methylome-transcriptome relationships in high- and low-CpG promoter genes in postmitotic neural rat tissue. Epigenetics 2012; 7:421-8; PMID:22415013; http://dx.doi.org/10.4161/epi.19565
  • Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res 2007; 35:406-13; PMID:17169996; http://dx.doi.org/10.1093/nar/gkl1057
  • Kikin O, D'Antonio L, Bagga PS. QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences. Nucleic Acids Res 2006; 34:W676-82; PMID:16845096; http://dx.doi.org/10.1093/nar/gkl253
  • Gosalia N, Neems D, Kerschner JL, Kosak ST, Harris A. Architectural proteins CTCF and cohesin have distinct roles in modulating the higher order structure and expression of the CFTR locus. Nucleic Acids Res 2014; 42:9612-22; PMID:25081205; http://dx.doi.org/10.1093/nar/gku648
  • Ernst J, Kheradpour P, Mikkelsen TS, Shoresh N, Ward LD, Epstein CB, Zhang X, Wang L, Issner R, Coyne M, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature 2011; 473:43-9; PMID:21441907; http://dx.doi.org/10.1038/nature09906
  • Chandra S, Terragni J, Zhang G, Pradhan S, Haushka S, Johnston D, Baribault C, Lacey M, Ehrlich M. Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes. Hum Mol Genet 2015; 24:4660-73; PMID:26041816; http://dx.doi.org/10.1093/hmg/ddv198
  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D'Souza C, Fouse SD, Johnson BE, Hong C, Nielsen C, Zhao Y, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010; 466:253-7; PMID:20613842; http://dx.doi.org/10.1038/nature09165
  • Terragni J, Zhang G, Sun Z, Pradhan S, Song L, Crawford GE, Lacey M, Ehrlich M. Notch signaling genes: Myogenic DNA hypomethylation and 5-hydroxymethylcytosine. Epigenetics 2014; 9:842-50; PMID:24670287; http://dx.doi.org/10.4161/epi.28597
  • Richardson RB, Allan DS, Le Y. Greater organ involution in highly proliferative tissues associated with the early onset and acceleration of ageing in humans. Exp Gerontol 2014; 55:80-91; PMID:24685641; http://dx.doi.org/10.1016/j.exger.2014.03.015
  • Giehr P, Kyriakopoulos C, Ficz G, Wolf V, Walter J. The Influence of hydroxylation on maintaining CpG methylation patterns: A Hidden Markov Model approach. PLoS Comput Biol 2016; 12:e1004905; PMID:27224554; http://dx.doi.org/10.1371/journal.pcbi.1004905
  • Dachtler J, Ivorra JL, Rowland TE, Lever C, Rodgers RJ, Clapcote SJ. Heterozygous deletion of alpha-neurexin I or alpha-neurexin II results in behaviors relevant to autism and schizophrenia. Behav Neurosci 2015; 129:765-76; PMID:26595880; http://dx.doi.org/10.1037/bne0000108
  • Hayashi T, Yoshida T, Ra M, Taguchi R, Mishina M. IL1RAPL1 associated with mental retardation and autism regulates the formation and stabilization of glutamatergic synapses of cortical neurons through RhoA signaling pathway. PloS One 2013; 8:e66254; PMID:23785489; http://dx.doi.org/10.1371/journal.pone.0066254
  • Perera A, Eisen D, Wagner M, Laube SK, Kunzel AF, Koch S, Steinbacher J, Schulze E, Splith V, Mittermeier N, et al. TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell reports 2016; 11:283-94; PMID:25843715; http://dx.doi.org/10.1016/j.celrep.2015.03.020
  • Moen EL, Mariani CJ, Zullow H, Jeff-Eke M, Litwin E, Nikitas JN, Godley LA. New themes in the biological functions of 5-methylcytosine and 5-hydroxymethylcytosine. Immunol Rev 2015; 263:36-49; PMID:25510270; http://dx.doi.org/10.1111/imr.12242
  • Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81; PMID:26474904; http://dx.doi.org/10.15252/embr.201540945
  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011; 479:74-9; PMID:21964334; http://dx.doi.org/10.1038/nature10442
  • Varley KE, Gertz J, Bowling KM, Parker SL, Reddy TE, Pauli-Behn F, Cross MK, Williams BA, Stamatoyannopoulos JA, Crawford GE, et al. Dynamic DNA methylation across diverse human cell lines and tissues. Gen Res 2013; 23:555-67; PMID:23325432; http://dx.doi.org/10.1101/gr.147942.112
  • Ramos MP, Wijetunga NA, McLellan AS, Suzuki M, Greally JM. DNA demethylation by 5-aza-2′-deoxycytidine is imprinted, targeted to euchromatin, and has limited transcriptional consequences. Epigenet Chromatin 2015; 8:11; PMID:25806086; http://dx.doi.org/10.1186/s13072-015-0004-x
  • Redies C, Hertel N, Hubner CA. Cadherins and neuropsychiatric disorders. Brain Res 2012; 1470:130-44; PMID:22765916; http://dx.doi.org/10.1016/j.brainres.2012.06.020
  • Spruijt CG, Gnerlich F, Smits AH, Pfaffeneder T, Jansen PW, Bauer C, Munzel M, Wagner M, Muller M, Khan F, et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 2013; 152:1146-59; PMID:23434322; http://dx.doi.org/10.1016/j.cell.2013.02.004
  • Phillips JE, Corces VG. CTCF: master weaver of the genome. Cell 2009; 137:1194-211; PMID:19563753; http://dx.doi.org/10.1016/j.cell.2009.06.001
  • Zhang K, Li N, Ainsworth RI, Wang W. Systematic identification of protein combinations mediating chromatin looping. Nat Commun 2016; 7:12249; PMID:27461729; http://dx.doi.org/10.1038/ncomms12249
  • Carvalho S, Raposo AC, Martins FB, Grosso AR, Sridhara SC, Rino J, Carmo-Fonseca M, de Almeida SF. Histone methyltransferase SETD2 coordinates FACT recruitment with nucleosome dynamics during transcription. Nucl Acids Res 2013; 41:2881-93; PMID:23325844; http://dx.doi.org/10.1093/nar/gks1472
  • Proudhon C, Duffie R, Ajjan S, Cowley M, Iranzo J, Carbajosa G, Saadeh H, Holland ML, Oakey RJ, Rakyan VK, et al. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol Cell 2012; 47:909-20; PMID:22902559; http://dx.doi.org/10.1016/j.molcel.2012.07.010
  • Lindholm ME, Marabita F, Gomez-Cabrero D, Rundqvist H, Ekstrom TJ, Tegner J, Sundberg CJ. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics 2014; 9:1557-69; PMID:25484259; http://dx.doi.org/10.4161/15592294.2014.982445
  • Laker RC, Ryall JG. DNA methylation in skeletal muscle stem cell specification, proliferation, and differentiation. Stem Cells Int 2016; 2016:5725927; PMID:26880971; http://dx.doi.org/10.1155/2016/5725927
  • Chung SY, Kao CH, Villarroya F, Chang HY, Chang HC, Hsiao SP, Liou GG, Chen SL. Bhlhe40 represses PGC-1alpha activity on metabolic gene promoters in myogenic cells. Mol Cell Biol 2015; 35:2518-29; PMID:25963661; http://dx.doi.org/10.1128/MCB.00387-15
  • Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 2005; 121:645-57; PMID:15907476; http://dx.doi.org/10.1016/j.cell.2005.03.013
  • Kodama H, Kumai Y, Nishimoto K, Sanuki T, Yumoto E. Modulation of satellite cells activity and MyoD in rat thyroarytenoid muscle after reinnervation. Laryngoscope 2015; 125:E245-51; PMID:25809587; http://dx.doi.org/10.1002/lary.25248
  • Hsiao SP, Chen SL. Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. Biochem J 2010; 428:223-33; PMID:20334626; http://dx.doi.org/10.1042/BJ20100250
  • Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, Heravi-Moussavi A, Kheradpour P, Zhang Z, Wang J, Ziller MJ, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518:317-30; PMID:25693563; http://dx.doi.org/10.1038/nature14248
  • Chadwick LH. The NIH Roadmap Epigenomics Program data resource. Epigenomics 2012; 4:317-4; PMID:22690667; http://dx.doi.org/10.2217/epi.12.18
  • Myers RM, Stamatoyannopoulos J, Snyder M, Dunham I, Hardison RC, Bernstein BE, Gingeras TR, Kent WJ, Birney E, Wold B, et al. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 2011; 9:e1001046; PMID:21526222; http://dx.doi.org/10.1371/journal.pbio.1001046
  • Song L, Zhang Z, Grasfeder LL, Boyle AP, Giresi PG, Lee BK, Sheffield NC, Graf S, Huss M, Keefe D, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Gen Res 2011; 21:1757-67; http://dx.doi.org/10.1101/gr.121541.111
  • Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth GP, Burge CB. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456:470-6; PMID:18978772; http://dx.doi.org/10.1038/nature07509
  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, et al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 2010; 18:662-74; PMID:20412780; http://dx.doi.org/10.1016/j.devcel.2010.02.014
  • Wang J, Zhuang J, Iyer S, Lin XY, Greven MC, Kim BH, Moore J, Pierce BG, Dong X, Virgil D, et al. Factorbook.org: a Wiki-based database for transcription factor-binding data generated by the ENCODE consortium. Nucleic Acids Res 2013; 41:D171-6; PMID:23203885; http://dx.doi.org/10.1093/nar/gks1221