1,472
Views
5
CrossRef citations to date
0
Altmetric
Review

Cellular analysis of the action of epigenetic drugs and probes

, , , &
Pages 308-322 | Received 29 Nov 2016, Accepted 14 Dec 2016, Published online: 02 Mar 2017

References

  • Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J, Bountra C, Brennan PE, Brown PJ, Bunnage ME, et al. The promise and peril of chemical probes. Nat Chem Biol 2015; 11(8):536-41; PMID: 26196764; https://doi.org/10.1038/nchembio.1867
  • O'Connor CJ, Laraia L, Spring DR. Chemical genetics. Chem Soc Rev 2011; 40(8):4332-45; PMID: 21562678; https://doi.org/10.1039/c1cs15053g
  • Scott GK, Marx C, Berger CE, Saunders LR, Verdin E, Schäfer S, Jung M, Benz. CC. Destabilization of ERBB2 transcripts by targeting 3´ UTR mRNA associated HuR and histone deacetylase-6 (HDAC6). Mol Can Res 2008; 6(7):1250-8; PMID:18644987; https://doi.org/10.1158/1541-7786.MCR-07-2110.
  • Lynch JT, Spencer GJ, Harris WJ, Maiques-Díaz A, Ciceri F, Huang X, Somervaille TCP. Pharmacological inhibitors of LSD1 promote differentiation of myeloid leukemia cells through a mechanism Independent of Histone Demethylation. Blood 2014; 124(21):267.
  • Franz H, Greschik H, Willmann D, Ozreti L, Jilg CA, Wardelmann E, Jung M, Buettner R, Schüle R. The histone code reader SPIN1 controls RET signaling in liposarcoma. Oncotarget 2014; 6(7):4773-89; PMID:25749382; https://doi.org/10.18632/oncotarget.3000
  • Wagner T, Greschik H, Burgahn T, Schmidtkunz K, Schott A-K, McMillan J, Baranauskiene L, Xiong Y, Fedorov O, Jin J, et al. Identification of a small-molecule ligand of the epigenetic reader protein Spindlin1 via a versatile screening platform. Nucleic Acids Res 2016; 44(9):e88; PMID: 26893353; https://doi.org/10.1093/nar/gkw089
  • Robaa D, Wagner T, Luise C, Carlino L, McMillan J, Flaig R, Schüle R, Jung M, Sippl W. Identification and structure-activity relationship studies of small-molecule inhibitors of the methyllysine reader Protein Spindlin1. ChemMedChem 2016; 11:1-13; PMID:27634332; https://doi.org/10.1002/cmdc.201600362
  • Wadhwa E, Nicolaides T, Muacevic A, Adler JR. Bromodomain inhibitor review: Bromodomain and extra-terminal family protein inhibitors as a potential New Therapy in Central Nervous System Tumors. Cureus 2016; 8(5):e620; PMID: 27382528; https://doi.org/10.7759/cureus.620
  • Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, et al. Selective inhibition of BET bromodomains. Nature 2010; 468(7327):1067-73; PMID: 20871596; https://doi.org/10.1038/nature09504
  • Edwards AM. Structural Genomics Consortium. Toronto: SGC Toronto; 2003 [accessed 2016 Oct 17]. http://www.thesgc.org/
  • Heltweg B, Jung M. A homogeneous nonisotopic histone deacetylase activity assay. J Biomol Screening 2003; 8(1):89-95; PMID:12855002; https://doi.org/10.1177/1087057102239644
  • Heltweg B, Trapp J, Jung M. In vitro assays for the determination of histone deacetylase activity. Methods 2005; 36(4):332-7; PMID: 16087348; https://doi.org/10.1016/j.ymeth.2005.03.003
  • Bonfils C, Kalita A, Dubay M, Siu LL, Carducci MA, Reid G, Martell RE, Besterman JM, Li Z. Evaluation of the pharmacodynamic effects of MGCD0103 from preclinical models to human, using a novel HDAC enzyme assay. Clin Cancer Res 2008; 11(14):3441-9; PMID:18519775; https://doi.org/10.1158/1078-0432.CCR-07-4427
  • Hoffmann K, Jung M, Brosch G, Loidl P. A non-isotopic assay for histone deacetylase activity. Nucleic Acids Res 1999; 27(9):2057-8; PMID: 10198441; https://doi.org/10.1093/nar/27.9.2057
  • Heltweg B, Dequiedt F, Verdin E, Jung M. Nonisotopic substrate for assaying both human zinc and NAD+dependent histone deacetylases. Anal Biochem 2003; 319(1):42-8; PMID: 12842105; https://doi.org/10.1016/S0003-2697(03)00276-8
  • Heltweg B, Dequiedt F, Marshall BL, Brauch C, Yoshida M, Nishino N, Verdin E, Jung M. Subtype selective substrates for histone deacetylases. J Med Chem 2004; 47(21):5235-43; PMID: 15456267; https://doi.org/10.1021/jm0497592
  • Gajer (née Wagner) J. Zelluläre Charakterisierung von Hemmstoffen der Histon-Acetyltransferasen und -Desacetylasen [dissertation]. Freiburg: Albert-Ludwigs-Universität Freiburg, Fakultät für Chemie, Pharmazie und Geowissenschaften; 2011.
  • Hauser A-T, Gajer (née Wagner) J, Jung M. Nonradioactive in vitro assays for histone deacetylases. Methods Mol Biol 2013; 981:211-27; PMID: 23381865; https://doi.org/10.1007/978-1-62703-305-3_17
  • Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 2007; 37(26):5541-52; PMID:17694093; https://doi.org/10.1038/sj.onc.1210620
  • Hsu C-W, Shou D, Huang R, Khuc T, Dai S, Zheng W, Klumpp-Thomas C, Xia M. Identification of HDAC Inhibitors Using a Cell-Based HDAC I/II Assay. J Biomol Screen 2016; 21(6):643-52; PMID: 26858181; https://doi.org/10.1177/1087057116629381
  • Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 2013; 341(6141):84-7; PMID: 23828940; https://doi.org/10.1126/science.1233606
  • Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc 2007; 2(9):2212-21; PMID: 17853878; https://doi.org/10.1038/nprot.2007.321
  • Jafari R, Almqvist H, Axelsson H, Ignatushchenko M, Lundbäck T, Nordlund P, Molina DM. The cellular thermal shift assay for evaluating drug target interactions in cells. Nat Protoc 2014; 9(9):2100-22; PMID: 25101824; https://doi.org/10.1038/nprot.2014.138
  • Holdgate GA, Ward WH. Measurements of binding thermodynamics in drug discovery. Drug Discovery Today 2005; 10(22):1543-50; PMID: 16257377; https://doi.org/10.1016/S1359-6446(05)03610-X
  • Matulis D, Kranz JK, Salemme FR, Todd MJ. Thermodynamic stability of carbonic anhydrase:  measurements of binding affinity and stoichiometry Using ThermoFluor. Biochem 2005; 44(13):5258-66; PMID:15794662; https://doi.org/10.1021/bi048135v
  • Cimmperman P, Baranauskienė L, Jachimovič; iū tė S, Jachno J, Torresan J, Michailovienė V, Matulienė J, Sereikaitė J, Bumelis V, Matulis D. A quantitative model of thermal stabilization and destabilization of proteins by ligands. Biophys J 2008; 95(7):3222-31; PMID: 18599640; https://doi.org/10.1529/biophysj.108.134973
  • Sprague BL, McNally JG. FRAP analysis of binding: proper and fitting. Trends Cell Biol 2005; 15(2):84-91; PMID: 15695095; https://doi.org/10.1016/j.tcb.2004.12.001
  • Philpott M, Rogers CM, Yapp C, Wells C, Lambert J-P, Strain-Damerell C, Burgess-Brown NA, Gingras A-C, Knapp S, Müller S. Assessing cellular efficacy of bromodomain inhibitors using fluorescence recovery after photobleaching. Epigenetics Chromatin 2014; 7(1):1-12; PMID: 24393457; https://doi.org/10.1186/1756-8935-7-14
  • Wagner T, Robaa D, Sippl W, Jung M. Mind the methyl: Methyllysine binding proteins in epigenetic regulation. ChemMedChem 2014; 9(3):466-83; PMID: 24449612; https://doi.org/10.1002/cmdc.201300422
  • Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P, Alekseyenko AA, Cheung M-S, Day DS, Gadel S, Gorchakov AA, et al. An assessment of histone-modification antibody quality. Nat Struct Mol Biol 2011; 18(1):91-3; PMID: 21131980; https://doi.org/10.1038/nsmb.1972
  • Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc 2007; 2(6):1445-57; PMID: 17545981; https://doi.org/10.1038/nprot.2007.202
  • Jin L, Hanigan CL, Wu Y, Wang W, Park BH, Woster PM, Casero RA. Loss of LSD1 (lysine-specific demethylase 1) suppresses growth and alters gene expression of human colon cancer cells in a p53- and DNMT1(DNA methyltransferase 1)-independent manner. Biochem J 2013; 449(2):459-68; PMID: 23072722; https://doi.org/10.1042/BJ20121360
  • Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, Barlev N, Bradley A, Cowley SM. Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 2010; 30(20):4851-63; PMID: 20713442; https://doi.org/10.1128/MCB.00521-10
  • Przespolewski A, Wang ES. Inhibitors of LSD1 as a potential therapy for acute myeloid leukemia. Expert Opin Invest Drugs 2016; 25(7):771-80; PMID:27077938; https://doi.org/10.1080/13543784.2016.1175432
  • Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, van Aller GS, Schneck JL, Carson JD, Liu Y, Butticello M, et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 2015; 28(1):57-69; PMID: 26175415; https://doi.org/10.1016/j.ccell.2015.06.002
  • Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, Klein H-U, Popescu AC, Burnett A, Mills K, et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med 2012; 4(18):605-11; PMID:22406747; https://doi.org/10.1038/nm.2661
  • Haggarty SJ, Koeller KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitor of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci U S A 2003; 100(8):4389-94; PMID: 12677000; https://doi.org/10.1073/pnas.0430973100
  • King ONF, Li XS, Sakurai M, Kawamura A, Rose NR, Ng SS, Quinn AM, Rai G, Mott BT, Beswick P, et al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase Inhibitors. PLoS One 2010; 5(11):e15535; PMID: 21124847; https://doi.org/10.1371/journal.pone.0015535
  • Luo X, Liu Y, Kubicek S, Myllyharju J, Tumber A, Ng S, Che KH, Podoll J, Heightman TD, Oppermann U, et al. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. JACS 2011; 133(24):9451-6; PMID:21585201; https://doi.org/10.1021/ja201597b
  • Morera L, Roatsch M, Furst MCD, Hoffmann I, Senger J, Hau M, Franz H, Schüle R, Heinrich MR, Jung M. 4-Biphenylalanine- and 3-Phenyltyrosine-derived hydroxamic acids as inhibitors of the JumonjiC-domain-containing histone demethylase KDM4A. ChemMedChem 2016; 11(18):2063-83; PMID: 27505861; https://doi.org/10.1002/cmdc.201600218
  • Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet 2011; 12(1):7-18. ENG; PMID: 21116306; https://doi.org/10.1038/nrg2905
  • Suva ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science 2013; 339(6127):1567-70. ENG; PMID: 23539597; https://doi.org/10.1126/science.1230184
  • Farnham P. Insights from genomic profiling of transcription factors. Nat Rev Genet 2009; 10(9):605-16; PMID: 19668247; https://doi.org/10.1038/nrg2636
  • Gilmour DS, Lis JT. In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 1985; 5(8):2009-18; PMID: 3018544; https://doi.org/10.1128/MCB.5.8.2009
  • Zhang B, Zheng H, Huang B, Li W, Xiang Y, Peng X, Ming J, Wu X, Zhang Y, Xu Q, et al. Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature 2016; 537(7621):553-7; PMID: 27626382; https://doi.org/10.1038/nature19361
  • Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012; 11(5):384-400; PMID: 22498752; https://doi.org/10.1038/nrd3674
  • Anders L, Guenther MG, Qi J, Fan ZP, Marineau JJ, Rahl PB, Loven J, Sigova AA, Smith WB, Lee TI, et al. Genome-wide localization of small molecules. Nat Biotech 2014; 32(1):92-6; PMID:24336317; https://doi.org/10.1038/nbt.2776
  • Sasaki K, Ito T, Nishino N, Khochbin S, Yoshida M. Real-time imaging of histone H4 hyperacetylation in living cells. PNAS 2009; 106(38):16257-62; PMID: 19805290; https://doi.org/10.1073/pnas.0902150106
  • Ito T, Umehara T, Sasaki K, Nakamura Y, Nishino N, Terada T, Shirouzu M, Padmanabhan B, Yokoyama S, Ito A, et al. Real-time imaging of histone H4K12–specific acetylation determines the modes of action of histone deacetylase and bromodomain inhibitors. Chem Biol 2011; 18(4):495-507; PMID: 21513886; https://doi.org/10.1016/j.chembiol.2011.02.009
  • Villar-Garea A, Imhof A. Histone modification analysis using mass spectrometry. Curr Protoc Protein Sci 2008; 51(14):87-97; PMID:18429056; https://doi.org/10.1002/0471140864.ps1410s51
  • Huang H, Lin S, Garcia BA, Zhao Y. Quantitative proteomic analysis of histone modifications. Chem Rev 2015; 115(6):2376-418; PMID: 25688442; https://doi.org/10.1021/cr500491u
  • Urh M. Chemo proteomics, a valuable tool for biomarker and drug discovery. Mol Biol 2014; 3(1):e117; https://doi.org/10.4172/2168-9547.1000e117
  • Weigt D, Hopf C, Medard G. Studying epigenetic complexes and their inhibitors with the proteomics toolbox. Clin Epigenet 2016; 8(76):1-16; PMID:27437033; https://doi.org/10.1186/s13148-016-0244-z
  • Schiedel M, Rumpf T, Karaman B, Lehotzky A, Gerhardt S, Ovadi J, Sippl W, Einsle O, Jung M. Structure-based development of an affinity probe for sirtuin 2. Angewandte Chemie 2016; 55(6):2252-6. ENG; PMID:26748890; https://doi.org/10.1002/anie.201509843
  • Ellis L, Pan Y, Smyth GK, George DJ, McCormack C, Williams-Truax R, Mita M, Beck J, Burris H, Ryan G, et al. Histone deacetylase inhibitor panobinostat induces clinical responses with associated alterations in gene expression Profiles in Cutaneous T-Cell Lymphoma. Clin Cancer Res 2008; 14(14):4500-10; PMID: 18628465; https://doi.org/10.1158/1078-0432.CCR-07-4262
  • Glaser KB, Li J, Staver MJ, Wei R-Q, Albert DH, Davidsen SK. Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun 2003; 310(2):529-36; PMID: 14521942; https://doi.org/10.1016/j.bbrc.2003.09.043
  • van Lint C, Emiliani S, Verdin E. The expression of a small fraction of cellular genes is changed in response to histone hyperacetylation. Gene Expr 1996; 5(9):245-53. PMID: 8723390.
  • Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: Defining a common gene set produced by HDAC Inhibition in T24 and MDA Carcinoma Cell Lines. Mol Can Ther 2003; 2(2):151-63; PMID:12589032
  • Chou Y-W, Lin F-F, Muniyan S, Lin FC, Chen C-S, Wang J, Huang C-C, Lin M-F. Cellular prostatic acid phosphatase (cPAcP) serves as a useful biomarker of histone deacetylase (HDAC) inhibitors in prostate cancer cell growth suppression. Cell Biosci 2015; 5(38):1-9; PMID: 25601894; https://doi.org/10.1186/s13578-015-0033-y
  • Ward CS, Eriksson P, Izquierdo-Garcia JL, Brandes AH, Ronen SM, Cheriyath V. HDAC inhibition induces increased choline uptake and elevated phosphocholine levels in MCF7 Breast Cancer Cells. PLoS One 2013; 8(4):e62610; PMID: 23626839; https://doi.org/10.1371/journal.pone.0062610
  • Scoumanne A, Chen X. The lysine-specific demethylase 1 is required for cell proliferation in both p53-dependent and -independent manners. J Biol Chem 2007; 282(21):15471-5; PMID: 17409384; https://doi.org/10.1074/jbc.M701023200
  • Kim BY, Ki WS, Yoshida M, Horinouchi S. Mechanism of cell cycle arrest caused by histone deacetylase inhibitors in human carcinoma cells. J Antibiot 2000; 53(10):1191-200; PMID: 11132966; https://doi.org/10.7164/antibiotics.53.1191
  • Marks PA, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1(3):194-202; PMID: 11902574; https://doi.org/10.1038/35106079
  • Pozarowski P, Darzynkiewicz Z. Analysis of cell cycle by flow cytometry. Methods Mol Biol 2004; 281:301-311; PMID:15220539; https://doi.org/10.1385/1-59259-811-0:301
  • Yu SE, Jang YK. The histone demethylase LSD1 is required for estrogen-dependent S100A7 gene expression in human breast cancer cells. Biochem Biophys Res Commun 2012; 427(2):336-42; PMID: 23000163; https://doi.org/10.1016/j.bbrc.2012.09.057
  • Lynch JT, Cockerill MJ, Hitchin JR, Wiseman DH, Somervaille TC. CD86 expression as a surrogate cellular biomarker for pharmacological inhibition of the histone demethylase lysine-specific demethylase 1. Anal Biochem 2013; 442(1):104-6; PMID: 23911524; https://doi.org/10.1016/j.ab.2013.07.032
  • Maeda T, Towatari M, Kosugi H, Saito H. Up-regulation of costimulatory/adhesion molecules by histone deacetylase inhibitors in acute myeloid leukemia cells. Blood 2000; 96(12):3847-56. PMID: 11090069
  • Kiesslich T, Pichler M, Neureiter D. Epigenetic control of epithelial-mesenchymal-transition in human cancer. Mol Clin Oncol 2012; 1(1):3-11; PMID: 24649114; https://doi.org/10.3892/mco.2012.28
  • Lin T, Ponn A, Hu X, Law BK, Lu J. Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 2010; 29(35):4896-904; PMID: 20562920; https://doi.org/10.1038/onc.2010.234
  • Peinado H, Ballestar E, Manuel Esteller, Amparo Cano. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 2004; 24(1):306-19; PMID: 14673164; https://doi.org/10.1128/MCB.24.1.306-319.2004
  • Whetstine JR, Ceron J, Ladd B, Dufourcq P, Reinke V, Shi Y. Regulation of tissue-specific and extracellular matrix-related genes by a class I histone deacetylase. Mol Cell 2005; 18(4):483-90; PMID: 15893731; https://doi.org/10.1016/j.molcel.2005.04.006
  • Zlokarnik G. [15]Fusions to β-lactamase as a reporter for gene expression in live mammalian cells. Methods Enzymol 2000; 326:221-41; PMID: 11036645; https://doi.org/10.1016/S0076-6879(00)26057-6
  • Martinez ED, Dull AB, Beutler JA, Hager GL. High‐Content fluorescence‐based screening for epigenetic modulators. Methods Enzymol 2006; 414:21-36; PMID: 17110184; https://doi.org/10.1016/S0076-6879(06)14002-1
  • Lin Y-C, Lin J-H, Chou C-W, Chang Y-F, Yeh S-H, Chen C-C. Statins increase p21 through inhibition of histone deacetylase activity and release of promoter-associated HDAC1/2. Cancer Res 2008; 68(7):2375-83; PMID: 18381445; https://doi.org/10.1158/0008-5472.CAN-07-5807
  • Atadja P. Development of the pan-DAC inhibitor panobinostat (LBH589): Successes and challenges. Cancer Lett. 2009; 280(2):233-41; PMID:19344997; https://doi.org/10.1016/j.canlet.2009.02.019
  • Sambeat A, Gulyaeva O, Dempersmier J, Tharp KM, Stahl A, Paul SM, Sul HS. LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program. Cell Rep 2016; 15(11):2536-49; PMID: 27264172; https://doi.org/10.1016/j.celrep.2016.05.019
  • Son D, Kim CS, Lee KR, Park H-J. Identification of new quinic acid derivatives as histone deacetylase inhibitors by fluorescence-based cellular assay. Bioorg Med Chem Lett 2016; 26(9):2365-69; PMID: 26996372; https://doi.org/10.1016/j.bmcl.2016.03.010
  • Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K-i, Nakao M. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 2012; 3(758):1-12; PMID:22453831; https://doi.org/10.1038/ncomms1755
  • Glaser KB, Li J, Aakre M, Morgan D, Sheppard G, Stewart K, Pollock J, Lee P, O'Connor C, Anderson S, et al. Transforming growth factor ß mimetics: Discovery of 7-[4-(4-Cyanophenyl)phenoxy]-Heptanohydroxamic acid, a biaryl hydroxamate inhibitor of histone deacetylase. Mol Cancer Ther 2002; 1(10):759-68; PMID:12492108
  • Bennesch MA, Segala G, Wider D, Picard D. LSD1 engages a corepressor complex for the activation of the estrogen receptor alpha by estrogen and cAMP. Nucleic Acids Res 2016; 44(18):8655-8670; PMID: 27325688; https://doi.org/10.1093/nar/gkw522.
  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters  , Antoine HFM, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437(7057):436-9; PMID: 16079795; https://doi.org/10.1038/nature04020
  • Ashburner BP, Westerheide SD, Baldwin AS. The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 To negatively regulate gene expression. Mol Cell Biol 2001; 21(20):7065-77; PMID: 11564889; https://doi.org/10.1128/MCB.21.20.7065-7077.2001
  • Auld DS, Southall NT, Jadhav A, Johnson RL, Diller DJ, Simeonov A, Austin CP, Inglese J. Characterization of chemical libraries for luciferase inhibitory activity. J. Med. Chem 2008; 51(8):2372-86; PMID: 18363348; https://doi.org/10.1021/jm701302v
  • Promega Corporation. Protocols and Applications Guide, Cell Viability.
  • Shi L, Cui S, Engel JD, Tanabe O. Lysine-specific demethylase 1 is a therapeutic target for fetal hemoglobin induction. Nat Med 2013; 3(19):291-294; PMID:23416702; https://doi.org/10.1038/nm.3101
  • Mohammad HP, Kruger RG. Antitumor activity of LSD1 inhibitors in lung cancer. Mol Cell Oncol 2016; 3(2):e1117700; PMID: 27308632; https://doi.org/10.1080/23723556.2015.1117700
  • Pollock JA, Larrea MD, Jasper JS, McDonnell DP, McCafferty DG. Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERα-dependent and independent manners. ACS Chem Biol 2012; 7(7):1221-31; PMID: 22533360; https://doi.org/10.1021/cb300108c
  • Itoh Y, Sawada H, Suzuki M, Tojo T, Sasaki R, Hasegawa M, Mizukami T, Suzuki T. Identification of Jumonji AT-rich interactive domain 1A inhibitors and their effect on cancer cells. ACS Med Chem Lett 2015; 6(6):665-70; PMID: 26101571; https://doi.org/10.1021/acsmedchemlett.5b00083
  • VanderMolen KM, McCulloch W, Pearce CJ, Oberlies NH. Romidepsin (Istodax, NSC 630176, FR901228, FK228, depsipeptide): a natural product recently approved for cutaneous T-cell lymphoma. J. Antibiotics 2011; 64(8):525-531; PMID:21587264; https://doi.org/10.1038/ja.2011.35
  • Brown M, Attardi L. The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 2005; 5(3):231-7; PMID: 15738985; https://doi.org/10.1038/nrc1560
  • Franken NAP, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro. Nat Protoc 2006; 1(5):2315-9; PMID: 17406473; https://doi.org/10.1038/nprot.2006.339
  • Wognum B, Yuan N, Lai B, Miller CL. Colony forming cell assays for human hematopoietic progenitor cells. Methods Mol Biol 2013; 946:267-83; PMID: 23179838; https://doi.org/10.1007/978-1-62703-128-8_17
  • Pavlik CM, Wong CYB, Ononye S, Lopez DD, Engene N, McPhail KL, Gerwick WH, Balunas MJ. Santacruzamate A, a potent and selective histone deacetylase (HDAC) inhibitor from the panamanian marine cyanobacterium cf. symploca sp. J Nat Prod 2013; 76(11):2026-33; PMID: 24164245; https://doi.org/10.1021/np400198r
  • Liu Q, Lu W, Ma M, Liao J, Ganesan A, Hu Y, Wen S, Huang P. Synthesis and biological evaluation of santacruzamate A and analogs as potential anticancer agents. RSC Adv 2015; 5(2):1109-12; https://doi.org/10.1039/C4RA13889A
  • Zwick V, Chatzivasileiou A-O, Deschamps N, Roussaki M, Simoes-Pires CA, Nurisso A, Denis I, Blanquart C, Martinet N, Carrupt P-A, et al. Aurones as histone deacetylase inhibitors: identification of key features. Bioorg Med Chem Lett 2014; 24(23):5497-501; PMID: 25455492; https://doi.org/10.1016/j.bmcl.2014.10.019
  • Itoh Y, Suzuki M, Matsui T, Ota Y, Hui Z, Tsubaki K, Suzuki T. False HDAC Inhibition by Aurone Compound. Chem Pharm Bull 2016; 64(8):1124-8; PMID: 27477650; https://doi.org/10.1248/cpb.c16-00123
  • Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt P-A, Simoes-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep 2016; 6(12):29086; PMID: 27404291; https://doi.org/10.1038/srep29086
  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Identification of a specific inhibitor of the histone methyltransferase SU(VAR)3–9. Nat Chem Biol 2005; 1(3):143-45; PMID: 16408017; https://doi.org/10.1038/nchembio721
  • Cherblanc FL, Chapman KL, Brown R, Fuchter MJ. Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases. Nat Chem Biol 2013; 9(3):136-7; PMID: 23416387; https://doi.org/10.1038/nchembio.1187
  • Cherblanc FL, Chapman KL, Reid J, Borg AJ, Sundriyal S, Alcazar-Fuoli L, Bignell E, Demetriades M, Schofield CJ, DiMaggio PA JR, et al. On the histone lysine methyltransferase activity of fungal metabolite chaetocin. J Med Chem 2013; 56(21):8616-25; PMID: 24099080; https://doi.org/10.1021/jm401063r
  • Greiner D, Bonaldi T, Eskeland R, Roemer E, Imhof A. Reply to “Chaetocin is a nonspecific inhibitor of histone lysine methyltransferases”. Nat Chem Biol 2013; 9(3):137; PMID: 23416388; https://doi.org/10.1038/nchembio.1188
  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276(39):36734-41; PMID: 11473107; https://doi.org/10.1074/jbc.M101287200
  • Kwon HJ, Owa T, Hassig CA, Shimada J, Schreiber SL. Depudecin induces morphological reversion of transformed fibroblasts via the inhibition of histone deacetylase. PNAS 1998; 95(7):3356-61; PMID: 9520369; https://doi.org/10.1073/pnas.95.7.3356
  • Baell JB. Feeling nature's PAINS: Natural products, natural product drugs, and pan assay interference compounds (PAINS). J Nat Prod 2016; 79(3):616-28; PMID: 26900761; https://doi.org/10.1021/acs.jnatprod.5b00947
  • Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 2011; 6(2):93-108; PMID: 21516481; https://doi.org/10.1007/s12263-011-0222-1
  • Pal-Bhadra M, Ramaiah MJ, Reddy TL, Krishnan A, Pushpavalli SNCVL, Babu KS, Tiwari AK, Rao JM, Yadav JS, Bhadra U. Plant HDAC inhibitor chrysin arrest cell growth and induce p21WAF1 by altering chromatin of STAT response element in A375 cells. BMC Cancer 2012; 12(180); PMID: 23020297; https://doi.org/10.1186/1471-2407-12-180
  • Sun L-P, Chen A-L, Hung H-C, Chien Y-H, Huang J-S, Huang C-Y, Chen Y-W, Chen C-N. Chrysin: a histone deacetylase 8 inhibitor with anticancer activity and a suitable candidate for the standardization of Chinese propolis. J Agric Food Chem 2012; 60(47):11748-58; PMID: 23134323; https://doi.org/10.1021/jf303261r
  • Dang W. The controversial world of sirtuins. Drug Discovery Today 2014; 12:e9-e17; PMID: 25027380; https://doi.org/10.1016/j.ddtec.2012.08.003
  • Venturelli S, Berger A, Bocker A, Busch C, Weiland T, Noor S, Leischner C, Schleicher S, Mayer M, Weiss TS, et al. Resveratrol as a pan-HDAC inhibitor alters the acetylation status of histone corrected proteins in human-derived hepatoblastoma cells. PLoS One 2013; 8(8):e73097; PMID: 24023672; https://doi.org/10.1371/journal.pone.0073097
  • Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem 2003; 278(21):19134-40; PMID: 12624111; https://doi.org/10.1074/jbc.M301580200
  • Hemshekhar M, Sebastin Santhosh M, Kemparaju K, Girish KS. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin Physiol Pharmacol 2012; 110(2):122-32; PMID:22103711; https://doi.org/10.1111/j.1742-7843.2011.00833.x
  • Jung M, Yong K-J, Velena A, Lee S. Epigenetic targets in drug discovery: cell-based assays for HDAC inhibitor hit validation. In: Epigenetic Targets in Drug Discovery. Vol. 42. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA; 2010. p. 119-137; https://doi.org/10.1002/9783527627073.ch6
  • Shepard BD, Tuma PL. Alcohol-induced protein hyperacetylation: Mechanisms and consequences. World J Gastroenterol 2009; 15(10):1219-30; PMID: 19291822; https://doi.org/10.3748/wjg.15.1219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.