3,588
Views
40
CrossRef citations to date
0
Altmetric
Review

Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases

&
Pages 340-352 | Received 23 Dec 2016, Accepted 30 Jan 2017, Published online: 13 Mar 2017

References

  • Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000; 403:41-5; PMID: 10638745; https://doi.org/10.1038/47412
  • Simpson RT. Structure of chromatin containing extensively acetylated H3 and H4. Cell 1978; 13:691-9; PMID: 657272; https://doi.org/10.1016/0092-8674(78)90219-2
  • Candido EP, Reeves R, Davie JR. Sodium butyrate inhibits histone deacetylation in cultured cells. Cell 1978; 14:105-13; PMID: 667927; https://doi.org/10.1016/0092-8674(78)90305-7
  • Sealy L, Chalkley R. The effect of sodium butyrate on histone modification. Cell 1978; 14:115-21; PMID: 667928; https://doi.org/10.1016/0092-8674(78)90306-9
  • Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. The Journal of biological chemistry 1990; 265:17174-9; PMID: 2211619
  • Taunton J, Hassig CA, Schreiber SL. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science (New York, NY) 1996; 272:408-11; https://doi.org/10.1126/science.272.5260.408
  • Carmen AA, Rundlett SE, Grunstein M. HDA1 and HDA3 are components of a yeast histone deacetylase (HDA) complex. The Journal of biological chemistry 1996; 271:15837-44. PMID: 8663039; https://doi.org/10.1074/jbc.271.26.15837
  • Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119:941-53; PMID: 15620353; https://doi.org/10.1016/j.cell.2004.12.012
  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science (New York, NY) 2001; 292:110-3; https://doi.org/10.1126/science.1060118
  • Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static? Cell 2002; 109:801-6; PMID: 12110177; https://doi.org/10.1016/S0092-8674(02)00798-5
  • Pedersen MT, Helin K. Histone demethylases in development and disease. Trends in cell biology 2010; 20:662-71; PMID: 20863703; https://doi.org/10.1016/j.tcb.2010.08.011
  • Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A. A novel mammalian flavin-dependent histone demethylase. The Journal of biological chemistry 2009; 284:17775-82; PMID: 19407342; https://doi.org/10.1074/jbc.M109.003087
  • Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006; 439:811-6; PMID: 16362057; https://doi.org/10.1038/nature04433
  • Yamane K, Toumazou C, Tsukada Y, Erdjument-Bromage H, Tempst P, Wong J, Zhang Y. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 2006; 125:483-95; PMID: 16603237; https://doi.org/10.1016/j.cell.2006.03.027
  • Markolovic S, Leissing TM, Chowdhury R, Wilkins SE, Lu X, Schofield CJ. Structure-function relationships of human JmjC oxygenases-demethylases versus hydroxylases. Current opinion in structural biology 2016; 41:62-72; PMID: 27309310; https://doi.org/10.1016/j.sbi.2016.05.013
  • Allis CD, Berger SL, Cote J, Dent S, Jenuwien T, Kouzarides T, Pillus L, Reinberg D, Shi Y, Shiekhattar R, et al. New nomenclature for chromatin-modifying enzymes. Cell 2007; 131:633-6; PMID: 18022353; https://doi.org/10.1016/j.cell.2007.10.039
  • Schenk T, Chen WC, Gollner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nature medicine 2012; 18:605-11; PMID: 22406747; https://doi.org/10.1038/nm.2661
  • Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, Ciceri F, Blaser JG, Greystoke BF, Jordan AM, et al. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21:473-87; PMID: 22464800; https://doi.org/10.1016/j.ccr.2012.03.014
  • Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS, Cahill DP, Nahed BV, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014; 157:580-94; PMID: 24726434; https://doi.org/10.1016/j.cell.2014.02.030
  • Ishikawa Y, Gamo K, Yabuki M, Takagi S, Toyoshima K, Nakayama K, Nakayama A, Morimoto M, Miyashita H, Dairiki R, et al. A novel LSD1 inhibitor T-3775440 disrupts GFI1B-containing complex leading to transdifferentiation and impaired growth of AML cells. Molecular cancer therapeutics 2016; PMID: 27903753
  • Maes T, Carceller E, Salas J, Ortega A, Buesa C. Advances in the development of histone lysine demethylase inhibitors. Current opinion in pharmacology 2015; 23:52-60; PMID: 26057211; https://doi.org/10.1016/j.coph.2015.05.009
  • Morera L, Lubbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8:57; PMID: 27222667; https://doi.org/10.1186/s13148-016-0223-4
  • Stavropoulos P, Blobel G, Hoelz A. Crystal structure and mechanism of human lysine-specific demethylase-1. Nature structural & molecular biology 2006; 13:626-32; https://doi.org/10.1038/nsmb1113
  • Chen Y, Yang Y, Wang F, Wan K, Yamane K, Zhang Y, Lei M. Crystal structure of human histone lysine-specific demethylase 1 (LSD1). Proceedings of the National Academy of Sciences of the United States of America 2006; 103:13956-61; PMID: 16956976; https://doi.org/10.1073/pnas.0606381103
  • Aravind L, Iyer LM. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities. Genome biology 2002; 3: Research0039; https://doi.org/10.1186/gb-2002-3-8-research0039
  • Tochio N, Umehara T, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Watanabe S, Tomo Y, Hanada M, et al. Solution structure of the SWIRM domain of human histone demethylase LSD1. Structure (London, England : 1993) 2006; 14:457-68; PMID: 16531230; https://doi.org/10.1016/j.str.2005.12.004
  • Hirschi A, Martin WJ, Luka Z, Loukachevitch LV, Reiter NJ. G-quadruplex RNA binding and recognition by the lysine-specific histone demethylase-1 enzyme. RNA 2016; 22:1250-60; PMID: 27277658; https://doi.org/10.1261/rna.057265.116
  • Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437:432-5; PMID: 16079794
  • Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Molecular cell 2005; 19:857-64; PMID: 16140033; https://doi.org/10.1016/j.molcel.2005.08.027
  • Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H. Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Molecular cell 2006; 23:377-87; PMID: 16885027; https://doi.org/10.1016/j.molcel.2006.07.012
  • Burg JM, Makhoul AT, Pemble CWt, Link JE, Heller FJ, McCafferty DG. A rationally-designed chimeric KDM1A/KDM1B histone demethylase tower domain deletion mutant retaining enzymatic activity. FEBS Lett 2015; 589:2340-6; PMID: 26226427; https://doi.org/10.1016/j.febslet.2015.07.028
  • Forneris F, Binda C, Adamo A, Battaglioli E, Mattevi A. Structural basis of LSD1-CoREST selectivity in histone H3 recognition. The Journal of biological chemistry 2007; 282:20070-4; PMID: 17537733; https://doi.org/10.1074/jbc.C700100200
  • Yang M, Culhane JC, Szewczuk LM, Gocke CB, Brautigam CA, Tomchick DR, Machius M, Cole PA, Yu H. Structural basis of histone demethylation by LSD1 revealed by suicide inactivation. Nature structural & molecular biology 2007; 14:535-9; https://doi.org/10.1038/nsmb1255
  • Burg JM, Gonzalez JJ, Maksimchuk KR, McCafferty DG. Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones. Biochemistry 2016; 55:1652-62; PMID: 26673564; https://doi.org/10.1021/acs.biochem.5b01135
  • Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437:436-9; PMID: 16079795
  • Zibetti C, Adamo A, Binda C, Forneris F, Toffolo E, Verpelli C, Ginelli E, Mattevi A, Sala C, Battaglioli E. Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system. J Neurosci 2010; 30:2521-32; PMID: 20164337; https://doi.org/10.1523/JNEUROSCI.5500-09.2010
  • Wada T, Koyama D, Kikuchi J, Honda H, Furukawa Y. Overexpression of the shortest isoform of histone demethylase LSD1 primes hematopoietic stem cells for malignant transformation. Blood 2015; 125:3731-46; PMID: 25904247; https://doi.org/10.1182/blood-2014-11-610907
  • Laurent B, Ruitu L, Murn J, Hempel K, Ferrao R, Xiang Y, Liu S, Garcia BA, Wu H, Wu F, et al. A specific LSD1/KDM1A isoform regulates neuronal differentiation through H3K9 demethylation. Molecular cell 2015; 57:957-70; PMID: 25684206; https://doi.org/10.1016/j.molcel.2015.01.010
  • Wang J, Telese F, Tan Y, Li W, Jin C, He X, Basnet H, Ma Q, Merkurjev D, Zhu X, et al. LSD1n is an H4K20 demethylase regulating memory formation via transcriptional elongation control. Nat Neurosci 2015; 18:1256-64; PMID: 26214369; https://doi.org/10.1038/nn.4069
  • Toffolo E, Rusconi F, Paganini L, Tortorici M, Pilotto S, Heise C, Verpelli C, Tedeschi G, Maffioli E, Sala C, et al. Phosphorylation of neuronal Lysine-Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. Journal of neurochemistry 2014; 128:603-16; PMID: 24111946; https://doi.org/10.1111/jnc.12457
  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, et al. p53 is regulated by the lysine demethylase LSD1. Nature 2007; 449:105-8; PMID: 17805299; https://doi.org/10.1038/nature06092
  • Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nature genetics 2009; 41:125-9; PMID: 19098913; https://doi.org/10.1038/ng.268
  • Nicholson TB, Chen T. LSD1 demethylates histone and non-histone proteins. Epigenetics 2014; 4:129-32; https://doi.org/10.4161/epi.4.3.8443
  • Hamamoto R, Saloura V, Nakamura Y. Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nature reviews Cancer 2015; 15:110-24; PMID: 25614009; https://doi.org/10.1038/nrc3884
  • Lin Y, Wu Y, Li J, Dong C, Ye X, Chi YI, Evers BM, Zhou BP. The SNAG domain of Snail1 functions as a molecular hook for recruiting lysine-specific demethylase 1. EMBO J 2010; 29:1803-16; PMID: 20389281; https://doi.org/10.1038/emboj.2010.63
  • Baron R, Binda C, Tortorici M, McCammon JA, Mattevi A. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure (London, England : 1993) 2011; 19:212-20; PMID: 21300290; https://doi.org/10.1016/j.str.2011.01.001
  • Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009; 461:415-8; PMID: 19727073; https://doi.org/10.1038/nature08315
  • Yang Z, Jiang J, Stewart MD, Qi S, Yamane K, Li J, Zhang Y, Wong J. AOF1 is a histone H3K4 demethylase possessing demethylase activity-independent repression function. Cell Res 2010; 20:276-87; PMID: 20101264; https://doi.org/10.1038/cr.2010.12
  • Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, et al. Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Molecular cell 2010; 39:222-33; PMID: 20670891; https://doi.org/10.1016/j.molcel.2010.07.008
  • van Essen D, Zhu Y, Saccani S. A feed-forward circuit controlling inducible NF-kappaB target gene activation by promoter histone demethylation. Molecular cell 2010; 39:750-60; PMID: 20832726; https://doi.org/10.1016/j.molcel.2010.08.010
  • Nagaoka K, Hino S, Sakamoto A, Anan K, Takase R, Umehara T, Yokoyama S, Sasaki Y, Nakao M. Lysine-specific demethylase 2 suppresses lipid influx and metabolism in hepatic cells. Molecular and cellular biology 2015; 35:1068-80; PMID: 25624347; https://doi.org/10.1128/MCB.01404-14
  • He F, Umehara T, Saito K, Harada T, Watanabe S, Yabuki T, Kigawa T, Takahashi M, Kuwasako K, Tsuda K, et al. Structural insight into the zinc finger CW domain as a histone modification reader. Structure (London, England : 1993) 2010; 18:1127-39; PMID: 20826339; https://doi.org/10.1016/j.str.2010.06.012
  • Hoppmann V, Thorstensen T, Kristiansen PE, Veiseth SV, Rahman MA, Finne K, Aalen RB, Aasland R. The CW domain, a new histone recognition module in chromatin proteins. Embo j 2011; 30:1939-52; PMID: 21522130; https://doi.org/10.1038/emboj.2011.108
  • Liu Y, Tempel W, Zhang Q, Liang X, Loppnau P, Qin S, Min J. Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins. The Journal of biological chemistry 2016; 291:9000-13; PMID: 26933034; https://doi.org/10.1074/jbc.M116.718973
  • Zhang Q, Qi S, Xu M, Yu L, Tao Y, Deng Z, Wu W, Li J, Chen Z, Wong J. Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res 2013; 23:225-41; PMID: 23266887; https://doi.org/10.1038/cr.2012.177
  • Fang R, Chen F, Dong Z, Hu D, Barbera AJ, Clark EA, Fang J, Yang Y, Mei P, Rutenberg M, et al. LSD2/KDM1B and its cofactor NPAC/GLYR1 endow a structural and molecular model for regulation of H3K4 demethylation. Molecular cell 2013; 49:558-70; PMID: 23260659; https://doi.org/10.1016/j.molcel.2012.11.019
  • Huang Y, Vasilatos SN, Boric L, Shaw PG, Davidson NE. Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res Treat 2012; 131:777-89; PMID: 21452019; https://doi.org/10.1007/s10549-011-1480-8
  • Chen F, Yang H, Dong Z, Fang J, Wang P, Zhu T, Gong W, Fang R, Shi YG, Li Z, et al. Structural insight into substrate recognition by histone demethylase LSD2/KDM1b. Cell Res 2013; 23:306-9; PMID: 23357850; https://doi.org/10.1038/cr.2013.17
  • Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. KDM1 class flavin-dependent protein lysine demethylases. Biopolymers 2015; 104:213-46; PMID: 25787087; https://doi.org/10.1002/bip.22643
  • Arrowsmith CH, Audia JE, Austin C, Baell J, Bennett J, Blagg J, Bountra C, Brennan PE, Brown PJ, Bunnage ME, et al. The promise and peril of chemical probes. Nature chemical biology 2015; 11:536-41; PMID: 26196764; https://doi.org/10.1038/nchembio.1867
  • Lee MG, Wynder C, Schmidt DM, McCafferty DG, Shiekhattar R. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chem Biol 2006; 13:563-7; PMID: 16793513; https://doi.org/10.1016/j.chembiol.2006.05.004
  • Schmidt DM, McCafferty DG. trans-2-Phenylcyclopropylamine is a mechanism-based inactivator of the histone demethylase LSD1. Biochemistry 2007; 46:4408-16; PMID: 17367163; https://doi.org/10.1021/bi0618621
  • Zheng YC, Yu B, Chen ZS, Liu Y, Liu HM. TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics 2016; 8:651-66; PMID: 27102879; https://doi.org/10.2217/epi-2015-0002
  • Ueda R, Suzuki T, Mino K, Tsumoto H, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, Miyata N. Identification of cell-active lysine specific demethylase 1-selective inhibitors. Journal of the American Chemical Society 2009; 131:17536-7; PMID: 19950987; https://doi.org/10.1021/ja907055q
  • Mimasu S, Umezawa N, Sato S, Higuchi T, Umehara T, Yokoyama S. Structurally designed trans-2-phenylcyclopropylamine derivatives potently inhibit histone demethylase LSD1/KDM1. Biochemistry 2010; 49:6494-503; PMID: 20568732; https://doi.org/10.1021/bi100299r
  • Yang M, Culhane JC, Szewczuk LM, Jalili P, Ball HL, Machius M, Cole PA, Yu H. Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine. Biochemistry 2007; 46:8058-65; PMID: 17569509; https://doi.org/10.1021/bi700664y
  • Mimasu S, Sengoku T, Fukuzawa S, Umehara T, Yokoyama S. Crystal structure of histone demethylase LSD1 and tranylcypromine at 2.25 A. Biochemical and biophysical research communications 2008; 366:15-22; PMID: 18039463; https://doi.org/10.1016/j.bbrc.2007.11.066
  • Binda C, Li M, Hubalek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proceedings of the National Academy of Sciences of the United States of America 2003; 100:9750-5; PMID: 12913124; https://doi.org/10.1073/pnas.1633804100
  • Hino S, Sakamoto A, Nagaoka K, Anan K, Wang Y, Mimasu S, Umehara T, Yokoyama S, Kosai K, Nakao M. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun 2012; 3:758; PMID: 22453831; https://doi.org/10.1038/ncomms1755
  • Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y, Benkirane M. NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Molecular cell 2012; 48:445-58; PMID: 23022380; https://doi.org/10.1016/j.molcel.2012.08.022
  • Konovalov S, Garcia-Bassets I. Analysis of the levels of lysine-specific demethylase 1 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in ovarian cancer cell lines. Journal of ovarian research 2013; 6:75; https://doi.org/10.1186/1757-2215-6-75
  • Schooley A, Moreno-Andres D, De Magistris P, Vollmer B, Antonin W. The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis. Journal of cell science 2015; 128:3466-77; https://doi.org/10.1242/jcs.173013
  • Li A, He Y, Sun S, Cai C, Li H. Lysine-specific demethylase 1 inhibitors protect cochlear spiral ganglion neurons against cisplatin-induced damage. Neuroreport 2015; 26:539-47.
  • Hirano K, Namihira M. LSD1 Mediates Neuronal Differentiation of Human Fetal Neural Stem Cells by Controlling the Expression of a Novel Target Gene, HEYL. Stem cells (Dayton, Ohio) 2016; 34:1872-82; PMID: 27018646; https://doi.org/10.1002/stem.2362
  • Di Stefano B, Collombet S, Jakobsen JS, Wierer M, Sardina JL, Lackner A, Stadhouders R, Segura-Morales C, Francesconi M, Limone F, et al. C/EBPalpha creates elite cells for iPSC reprogramming by upregulating Klf4 and increasing the levels of Lsd1 and Brd4. Nature cell biology 2016; 18:371-81; PMID: 26974661; https://doi.org/10.1038/ncb3326
  • Sato T, Cesaroni M, Chung W, Panjarian S, Tran A, Madzo J, Okamoto Y, Zhang H, Chen X, Jelinek J, et al. Transcriptional Selectivity of Epigenetic Therapy in Cancer. Cancer Res 2016; 77(2):470-481.
  • Binda C, Valente S, Romanenghi M, Pilotto S, Cirilli R, Karytinos A, Ciossani G, Botrugno OA, Forneris F, Tardugno M, et al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. Journal of the American Chemical Society 2010; 132:6827-33; PMID: 20415477; https://doi.org/10.1021/ja101557k
  • Liang Y, Quenelle D, Vogel JL, Mascaro C, Ortega A, Kristie TM. A novel selective LSD1/KDM1A inhibitor epigenetically blocks herpes simplex virus lytic replication and reactivation from latency. MBio 2013; 4:e00558-12; https://doi.org/10.1128/mBio.00558-12
  • Rotili D, Tomassi S, Conte M, Benedetti R, Tortorici M, Ciossani G, Valente S, Marrocco B, Labella D, Novellino E, et al. Pan-histone demethylase inhibitors simultaneously targeting Jumonji C and lysine-specific demethylases display high anticancer activities. J Med Chem 2014; 57:42-55.
  • Han Y, Wu C, Lv H, Liu N, Deng H. Novel Tranylcypromine/Hydroxylcinnamic Acid Hybrids as Lysine-Specific Demethylase 1 Inhibitors with Potent Antitumor Activity. Chemical & pharmaceutical bulletin 2015; 63:882-9.
  • Miyamura S, Araki M, Ota Y, Itoh Y, Yasuda S, Masuda M, Taniguchi T, Sowa Y, Sakai T, Suzuki T, et al. C-H activation enables a rapid structure-activity relationship study of arylcyclopropyl amines for potent and selective LSD1 inhibitors. Org Biomol Chem 2016; 14:8576-85; PMID: 27548471; https://doi.org/10.1039/C6OB01483F
  • Bonivento D, Milczek EM, McDonald GR, Binda C, Holt A, Edmondson DE, Mattevi A. Potentiation of ligand binding through cooperative effects in monoamine oxidase B. The Journal of biological chemistry 2010; 285:36849-56; PMID: 20855894; https://doi.org/10.1074/jbc.M110.169482
  • Agranat I, Caner H, Caldwell J. Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov 2002; 1:753-68; PMID: 12360254; https://doi.org/10.1038/nrd915
  • Ogasawara D, Suzuki T, Mino K, Ueda R, Khan MN, Matsubara T, Koseki K, Hasegawa M, Sasaki R, Nakagawa H, et al. Synthesis and biological activity of optically active NCL-1, a lysine-specific demethylase 1 selective inhibitor. Bioorg Med Chem 2011; 19:3702-8; PMID: 21227703; https://doi.org/10.1016/j.bmc.2010.12.024
  • Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Monaldi D, et al. Pure enantiomers of benzoylamino-tranylcypromine: LSD1 inhibition, gene modulation in human leukemia cells and effects on clonogenic potential of murine promyelocytic blasts. European journal of medicinal chemistry 2015; 94:163-74; PMID: 25768700; https://doi.org/10.1016/j.ejmech.2015.02.060
  • Valente S, Rodriguez V, Mercurio C, Vianello P, Saponara B, Cirilli R, Ciossani G, Labella D, Marrocco B, Ruoppolo G, et al. Pure Diastereomers of a Tranylcypromine-Based LSD1 Inhibitor: Enzyme Selectivity and In-Cell Studies. ACS Med Chem Lett 2015; 6:173-7; PMID: 25699146; https://doi.org/10.1021/ml500424z
  • Vianello P, Botrugno OA, Cappa A, Dal Zuffo R, Dessanti P, Mai A, Marrocco B, Mattevi A, Meroni G, Minucci S, et al. Discovery of a Novel Inhibitor of Histone Lysine-Specific Demethylase 1A (KDM1A/LSD1) as Orally Active Antitumor Agent. J Med Chem 2016; 59:1501-17; PMID: 26702542; https://doi.org/10.1021/acs.jmedchem.5b01209
  • Rodriguez V, Valente S, Rovida S, Rotili D, Stazi G, Lucidi A, Ciossani G, Mattevi A, Botrugno OA, Dessanti P, et al. Pyrrole- and indole-containing tranylcypromine derivatives as novel lysine-specific demethylase 1 inhibitors active on cancer cells. Med Chem Commun 2015; 6:665-70.
  • Gooden DM, Schmidt DM, Pollock JA, Kabadi AM, McCafferty DG. Facile synthesis of substituted trans-2-arylcyclopropylamine inhibitors of the human histone demethylase LSD1 and monoamine oxidases A and B. Bioorg Med Chem Lett 2008; 18:3047-51; PMID: 18242989; https://doi.org/10.1016/j.bmcl.2008.01.003
  • Vianello P, Botrugno OA, Cappa A, Ciossani G, Dessanti P, Mai A, Mattevi A, Meroni G, Minucci S, Thaler F, et al. Synthesis, biological activity and mechanistic insights of 1-substituted cyclopropylamine derivatives: a novel class of irreversible inhibitors of histone demethylase KDM1A. European journal of medicinal chemistry 2014; 86:352-63; PMID: 25173853; https://doi.org/10.1016/j.ejmech.2014.08.068
  • Pieroni M, Annunziato G, Azzali E, Dessanti P, Mercurio C, Meroni G, Trifiro P, Vianello P, Villa M, Beato C, et al. Further insights into the SAR of alpha-substituted cyclopropylamine derivatives as inhibitors of histone demethylase KDM1A. European journal of medicinal chemistry 2015; 92:377-86; PMID: 25585008; https://doi.org/10.1016/j.ejmech.2014.12.032
  • Neelamegam R, Ricq EL, Malvaez M, Patnaik D, Norton S, Carlin SM, Hill IT, Wood MA, Haggarty SJ, Hooker JM. Brain-penetrant LSD1 inhibitors can block memory consolidation. ACS Chem Neurosci 2012; 3:120-8; PMID: 22754608; https://doi.org/10.1021/cn200104y
  • McGrath JP, Williamson KE, Balasubramanian S, Odate S, Arora S, Hatton C, Edwards TM, O'Brien T, Magnuson S, Stokoe D, et al. Pharmacological Inhibition of the Histone Lysine Demethylase KDM1A Suppresses the Growth of Multiple Acute Myeloid Leukemia Subtypes. Cancer Res 2016; 76:1975-88; PMID: 26837761; https://doi.org/10.1158/0008-5472.CAN-15-2333
  • Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS, Schneck JL, Carson JD, Liu Y, Butticello M, et al. A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC. Cancer Cell 2015; 28:57-69; PMID: 26175415; https://doi.org/10.1016/j.ccell.2015.06.002
  • Ahmed Khan MN, Tsumoto H, Itoh Y, Ota Y, Suzuki M, Ogasawara D, Nakagawa H, Mizukami T, Miyata N, Suzuki T. Design, synthesis, and biological activity of N-alkylated analogue of NCL1, a selective inhibitor of lysine-specific demethylase 1. Med Chem Commun 2015; 6:407-12; https://doi.org/10.1039/C4MD00330F
  • Wu F, Zhou C, Yao Y, Wei L, Feng Z, Deng L, Song Y. 3-(Piperidin-4-ylmethoxy)pyridine Containing Compounds Are Potent Inhibitors of Lysine Specific Demethylase 1. J Med Chem 2016; 59:253-63.
  • Ogasawara D, Itoh Y, Tsumoto H, Kakizawa T, Mino K, Fukuhara K, Nakagawa H, Hasegawa M, Sasaki R, Mizukami T, et al. Lysine-specific demethylase 1-selective inactivators: protein-targeted drug delivery mechanism. Angew Chem Int Ed Engl 2013; 52:8620-4.
  • Culhane JC, Cole PA. LSD1 and the chemistry of histone demethylation. Current opinion in chemical biology 2007; 11:561-8; PMID: 17851108; https://doi.org/10.1016/j.cbpa.2007.07.014
  • Pollock JA, Larrea MD, Jasper JS, McDonnell DP, McCafferty DG. Lysine-specific histone demethylase 1 inhibitors control breast cancer proliferation in ERalpha-dependent and -independent manners. ACS Chem Biol 2012; 7:1221-31; PMID: 22533360; https://doi.org/10.1021/cb300108c
  • Culhane JC, Szewczuk LM, Liu X, Da G, Marmorstein R, Cole PA. A mechanism-based inactivator for histone demethylase LSD1. Journal of the American Chemical Society 2006; 128:4536-7; PMID: 16594666; https://doi.org/10.1021/ja0602748
  • Schmitt ML, Hauser AT, Carlino L, Pippel M, Schulz-Fincke J, Metzger E, Willmann D, Yiu T, Barton M, Schule R, et al. Nonpeptidic propargylamines as inhibitors of lysine specific demethylase 1 (LSD1) with cellular activity. J Med Chem 2013; 56:7334-42; https://doi.org/10.1021/jm400792m
  • Culhane JC, Wang D, Yen PM, Cole PA. Comparative analysis of small molecules and histone substrate analogues as LSD1 lysine demethylase inhibitors. Journal of the American Chemical Society 2010; 132:3164-76; PMID: 20148560; https://doi.org/10.1021/ja909996p
  • Prusevich P, Kalin JH, Ming SA, Basso M, Givens J, Li X, Hu J, Taylor MS, Cieniewicz AM, Hsiao PY, et al. A selective phenelzine analogue inhibitor of histone demethylase LSD1. ACS Chem Biol 2014; 9:1284-93; PMID: 24707965; https://doi.org/10.1021/cb500018s
  • Kakizawa T, Ota Y, Itoh Y, Tsumoto H, Suzuki T. Histone H3 peptide based LSD1-selective inhibitors. Bioorg Med Chem Lett 2015; 25:1925-8; PMID: 25827526; https://doi.org/10.1016/j.bmcl.2015.03.030
  • Itoh Y, Aihara K, Mellini P, Tojo T, Ota Y, Tsumoto H, Solomon VR, Zhan P, Suzuki M, Ogasawara D, et al. Identification of SNAIL1 Peptide-Based Irreversible Lysine-Specific Demethylase 1-Selective Inactivators. J Med Chem 2016; 59:1531-44; https://doi.org/10.1021/acs.jmedchem.5b01323
  • Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM, Casero RA, Jr. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proceedings of the National Academy of Sciences of the United States of America 2007; 104:8023-8.
  • Nowotarski SL, Pachaiyappan B, Holshouser SL, Kutz CJ, Li Y, Huang Y, Sharma SK, Casero RA, Jr., Woster PM. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures. Bioorg Med Chem 2015; 23:1601-12; PMID: 25725609; https://doi.org/10.1016/j.bmc.2015.01.049
  • Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R, Liu Y, Ward D, Quan J, Ye T, et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res 2011; 71:7238-49.
  • Willmann D, Lim S, Wetzel S, Metzger E, Jandausch A, Wilk W, Jung M, Forne I, Imhof A, Janzer A, et al. Impairment of prostate cancer cell growth by a selective and reversible lysine-specific demethylase 1 inhibitor. Int J Cancer 2012; 131:2704-9; PMID: 22447389; https://doi.org/10.1002/ijc.27555
  • Hazeldine S, Pachaiyappan B, Steinbergs N, Nowotarski S, Hanson AS, Casero RA, Jr., Woster PM. Low molecular weight amidoximes that act as potent inhibitors of lysine-specific demethylase 1. J Med Chem 2012; 55:7378-91; PMID: 22876979; https://doi.org/10.1021/jm3002845
  • Dulla B, Kirla KT, Rathore V, Deora GS, Kavela S, Maddika S, Chatti K, Reiser O, Iqbal J, Pal M. Synthesis and evaluation of 3-amino/guanidine substituted phenyl oxazoles as a novel class of LSD1 inhibitors with anti-proliferative properties. Org Biomol Chem 2013; 11:3103-7; PMID: 23575971; https://doi.org/10.1039/c3ob40217g
  • Hitchin JR, Blagg J, Burke R, Burns S, Cockerill MJ, Fairweather EE, Hutton C, Jordan AM, McAndrew C, Mirza A, et al. Development and evaluation of selective, reversible LSD1 inhibitors derived from fragments. MedChemComm 2013; 4:1513-22; https://doi.org/10.1039/c3md00226h
  • Zheng YC, Duan YC, Ma JL, Xu RM, Zi X, Lv WL, Wang MM, Ye XW, Zhu S, Mobley D, et al. Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J Med Chem 2013; 56:8543-60.
  • Ye X-W, Zheng Y-C, Duan Y-C, Wang M-M, Yu B, Ren J-L, Ma J-L, Zhang E, Liu H-M. Synthesis and biological evaluation of coumarin-1,2,3-triazole-dithiocarbamate hybrids as potent LSD1 inhibitors. MedChemComm 2014; 5:650-4.
  • Kutz CJ, Holshouser SL, Marrow EA, Woster PM. 3,5-Diamino-1,2,4-triazoles as a novel scaffold for potent, reversible LSD1 (KDM1A) inhibitors. Medchemcomm 2014; 5:1863-70; PMID: 25580204; https://doi.org/10.1039/C4MD00283K
  • Zhou C, Kang D, Xu Y, Zhang L, Zha X. Identification of Novel Selective Lysine-Specific Demethylase 1 (LSD1) Inhibitors Using a Pharmacophore-Based Virtual Screening Combined with Docking. Chemical biology & drug design 2015; 85:659-71.
  • Ma LY, Zheng YC, Wang SQ, Wang B, Wang ZR, Pang LP, Zhang M, Wang JW, Ding L, Li J, et al. Design, synthesis, and structure-activity relationship of novel LSD1 inhibitors based on pyrimidine-thiourea hybrids as potent, orally active antitumor agents. J Med Chem 2015; 58:1705-16.
  • Wang S, Zhao LJ, Zheng YC, Shen DD, Miao EF, Qiao XP, Zhao LJ, Liu Y, Huang R, Yu B, et al. Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidines as potent lysine specific demethylase 1 (LSD1/KDM1A) inhibitors. European journal of medicinal chemistry 2017; 125:940-51.
  • Mould DP, McGonagle AE, Wiseman DH, Williams EL, Jordan AM. Reversible inhibitors of LSD1 as therapeutic agents in acute myeloid leukemia: clinical significance and progress to date. Medicinal research reviews 2015; 35:586-618; PMID: 25418875; https://doi.org/10.1002/med.21334
  • Sorna V, Theisen ER, Stephens B, Warner SL, Bearss DJ, Vankayalapati H, Sharma S. High-throughput virtual screening identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J Med Chem 2013; 56:9496-508; PMID: 24237195; https://doi.org/10.1021/jm400870h
  • Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, Sorna V, Beckerle MC, Sharma S, Lessnick SL. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res 2014; 20:4584-97; PMID: 24963049; https://doi.org/10.1158/1078-0432.CCR-14-0072
  • Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SG, Liu K, Iyer SP, Bearss D, Bhalla KN. Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia 2014; 28:2155-64; PMID: 24699304; https://doi.org/10.1038/leu.2014.119
  • Zhou Y, Li Y, Wang WJ, Xiang P, Luo XM, Yang L, Yang SY, Zhao YL. Synthesis and biological evaluation of novel (E)-N′-(2,3-dihydro-1H-inden-1-ylidene) benzohydrazides as potent LSD1 inhibitors. Bioorg Med Chem Lett 2016; 26:4552-7.
  • Luka Z, Moss F, Loukachevitch LV, Bornhop DJ, Wagner C. Histone demethylase LSD1 is a folate-binding protein. Biochemistry 2011; 50:4750-6; PMID: 21510664; https://doi.org/10.1021/bi200247b
  • Luka Z, Pakhomova S, Loukachevitch LV, Calcutt MW, Newcomer ME, Wagner C. Crystal structure of the histone lysine specific demethylase LSD1 complexed with tetrahydrofolate. Protein science : a publication of the Protein Society 2014; 23:993-8; PMID: 24715612; https://doi.org/10.1002/pro.2469
  • Speranzini V, Rotili D, Ciossani G, Pilotto S, Marrocco B, Forgione M, Lucidi A, Forneris F, Mehdipour P, Velankar S, et al. Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features. Sci Adv 2016; 2:e1601017; PMID: 27626075; https://doi.org/10.1126/sciadv.1601017
  • Chang Y, Ganesh T, Horton JR, Spannhoff A, Liu J, Sun A, Zhang X, Bedford MT, Shinkai Y, Snyder JP, et al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. Journal of molecular biology 2010; 400:1-7.
  • Abdulla A, Zhao X, Yang F. Natural Polyphenols Inhibit Lysine-Specific Demethylase-1 in vitro. Journal of biochemical and pharmacological research 2013; 1:56-63; PMID: 23662249
  • Sakane C, Okitsu T, Wada A, Sagami H, Shidoji Y. Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives. Biochemical and biophysical research communications 2014; 444:24-9; https://doi.org/10.1016/j.bbrc.2013.12.144
  • Zheng YC, Shen DD, Ren M, Liu XQ, Wang ZR, Liu Y, Zhang QN, Zhao LJ, Zhao LJ, Ma JL, et al. Baicalin, a natural LSD1 inhibitor. Bioorganic chemistry 2016; 69:129-31; PMID: 27814566; https://doi.org/10.1016/j.bioorg.2016.10.004
  • Kumarasinghe IR, Woster PM. Synthesis and evaluation of novel cyclic Peptide inhibitors of lysine-specific demethylase 1. ACS Med Chem Lett 2014; 5:29-33; PMID: 24883177; https://doi.org/10.1021/ml4002997
  • Tortorici M, Borrello MT, Tardugno M, Chiarelli LR, Pilotto S, Ciossani G, Vellore NA, Bailey SG, Cowan J, O'Connell M, et al. Protein recognition by short peptide reversible inhibitors of the chromatin-modifying LSD1/CoREST lysine demethylase. ACS Chem Biol 2013; 8:1677-82; PMID: 23721412; https://doi.org/10.1021/cb4001926
  • Mino K, Nishimura S, Ninomiya S, Tujii H, Matsumori Y, Tsuchida M, Hosoi M, Koseki K, Wada S, Hasegawa M, et al. Regulation of tissue factor pathway inhibitor-2 (TFPI-2) expression by lysine-specific demethylase 1 and 2 (LSD1 and LSD2). Bioscience, biotechnology, and biochemistry 2014; 78:1010-7; PMID: 25036127; https://doi.org/10.1080/09168451.2014.910104
  • Kakizawa T, Mizukami T, Itoh Y, Hasegawa M, Sasaki R, Suzuki T. Evaluation of phenylcyclopropylamine compounds by enzymatic assay of lysine-specific demethylase 2 in the presence of NPAC peptide. Bioorg Med Chem Lett 2016; 26:1193-5; PMID: 26794039; https://doi.org/10.1016/j.bmcl.2016.01.036