1,214
Views
10
CrossRef citations to date
0
Altmetric
Brief Report

Modulation of transcription factor binding and epigenetic regulation of the MLH1 CpG island and shore by polymorphism rs1800734 in colorectal cancer

&
Pages 441-448 | Received 06 Dec 2016, Accepted 06 Mar 2017, Published online: 12 Apr 2017

References

  • Raptis S, Mrkonjic M, Green RC, Pethe VV, Monga N, Chan YM, Daftary D, Dicks E, Younghusband BH, Parfrey PS et al. MLH1 -93G>A promoter polymorphism and the risk of microsatellite-unstable colorectal cancer. J Natl Cancer Inst 2007; 99(6):463-74; PMID:17374836; https://doi.org/10.1093/jnci/djk095
  • Mrkonjic M, Roslin NM, Greenwood CM, Raptis S, Pollett A, Laird PW, Pethe VV, Chiang T, Daftary D, Dicks E et al. Specific variants in the MLH1 gene region may drive DNA methylation, loss of protein expression, and MSI-H colorectal cancer. PLoS One 2010; 5(10):e13314; PMID:20967208; https://doi.org/10.1371/journal.pone.0013314
  • Thibodeau SN, French AJ, Cunningham JM, Tester D, Burgart LJ, Roche PC, McDonnell SK, Schaid DJ, Vockley CW, MIchels VV et al. Microsatellite instability in colorectal cancer: Different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 1998; 58(8):1713-8; PMID:9563488
  • Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nat Lett 1993; 363:558-61; PMID:8505985; https://doi.org/10.1038/363558a0
  • Boland C, Thibodeau S, Hamilton S, Sidranksy D, Eshleman J, Burt R, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN et al. A national cancer institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58(22):5248-57; PMID:9823339
  • Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology 2010; 138(6):2073-87; PMID:20420947; https://doi.org/10.1053/j.gastro.2009.12.064
  • Rodriguez-Hernandez I, Perdomo S, Santos-briz A, Garcia JL, Gomez-Moreta JA, Cruz JJ, Gonzalez-Sarmiento R. Analysis of DNA repair gene polymorphisms in glioblastoma. Gene 2014; 536(1):79-83; PMID:24325908; https://doi.org/10.1016/j.gene.2013.11.077
  • Zhu H, Li X, Zhang X, Chen D, Li D, Ren J, Gu H, Shu Y, Wang D. Polymorphisms in mismatch repair genes are associated with risk and microsatellite instability of gastric cancer, and interact with life exposures. Gene 2016; 579(1):52-7; PMID:26724419; https://doi.org/10.1016/j.gene.2015.12.050
  • Niu L, Li S, Liang H, Li H. The hMLH1 −93G>A polymorphism and risk of ovarian cancer in the chinese population. PLoS One 2015; 10(8):e0135822; PMID:26275295; https://doi.org/10.1371/journal.pone0135822
  • Lo YL, Hsiao CF, Jou YS, Chang GC, Tsai YH, Su WC, Chen KY, Chen YM, Huang MS, Hsieh WS et al. Polymorphisms of MLH1 and MSH2 genes and the risk of lung cancer among never smokers. Lung Cancer 2011; 72(3):280-6; PMID:21093954; https://doi.org/10.1016/j.lungcan.2010.10.009
  • Miyakura Y, Tahara M, Lefor AT, Yasuda Y, Sugano K. Haplotype defined by the MLH1-93G/A polymorphism is associated with MLH1 promoter hypermethylation in sporadic colorectal cancers. BMC Res Notes 2014; 7:835; PMID:25421847; https://doi.org/10.1186/1756-0500-7-835
  • Whiffin N, Broderick P, Lubbe SJ, Pittman AM, Penegar S, Chandler I, Houlston RS. MLH1-93G >A is a risk factor for MSI colorectal cancer. Carcinogenesis 2011; 32(8):1157-61; PMID:21565826; https://doi.org/10.1093/carcin/bgr089
  • Perera S, Mrkonjic M, Rawson JB, Bapat B. Functional effects of the MLH1-93G>A polymorphism on MLH1/EPM2AIP1 promoter activity. Oncol Rep 2011; 25(3):809-15; PMID:21206982; https://doi.org/10.3892/or.2010.1129
  • Savio AJ, Lemire M, Mrkonjic M, Gallinger S, Zanke BW, Hudson TJ, Bapat B. MLH1 Region Polymorphisms Show a Significant Association with CpG Island Shore Methylation in a Large Cohort of Healthy Individuals. PLoS One 2012; 7(12):e51531; PMID:23240038; https://doi.org/10.1371/journal.pone.0051531
  • Zentner GE, Henikoff S. Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 2013; 20(3):259-66; PMID:23463310; https://doi.org/10.1038/nsmb.2470
  • Kimura H. Histone modifications for human epigenome analysis. J Hum Genet 2013; 58(7):439-45; PMID:23739122; https://doi.org/10.1038/jhg.2013.66
  • Zentner GE, Tesar PJ, Scacheri PC. Epigenetic signatures distinguish multiple classes of enhancers with distinct cellular functions. Genome Res 2011; 21(8):1273-83; PMID:21632746; https://doi.org/10.1101/gr.122382.111
  • Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000; 405(6785):482-5; PMID:10839546; https://doi.org/10.1038/35013100
  • Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000; 405(6785):486-9; PMID:10839547; https://doi.org/10.1038/35013106
  • Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknæs M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013; 2:e71; PMID:24042735; https://doi.org/10.1038/oncsis.2013.35
  • Ku JL, Park JG. Biology of SNU cell lines. Cancer Res Treat 2005; 37(1):1-19; PMID:19956504; https://doi.org/10.4143/crt.2005.37.1.1
  • Mouradov D, Sloggett C, Jorissen RN, Love CG, Li S, Burgess AW, Arango D, Strausberg RL, Buchanan D, Wormald S, et al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer. Cancer Res 2014; 74(12):3238-47; PMID:24755471; https://doi.org/10.1158/0008-5472.CAN-14-0013
  • Boyer JC, Umar A, Risinger JI, Lipford JR, Kane M, Yin S, Barrett JC, Kolodner RD, Kunkel TA. Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Res 1995; 55(24):6063-70; PMID:8521394
  • Papdopolous N, Nicolaides NC, Liu B, Parsons R, Lengauer C, Palombo F. Mutations of GTBP in genetically unstable cells. Science 1995; 268(5219):1915-7; PMID:7604266
  • Spisak S, Lawrenson K, Fu Y, Csabai I, Cottman RT, Seo JH, Haiman C, Han Y, Lenci R, Li Q et al. CAUSEL: an epigenome- and genome-editing pipeline for establishing function of noncoding GWAS variants. Nat Med 2015; 21(11):1357-63; PMID:26398868; https://doi.org/10.1038/nm.3975
  • Chen J, Tian W. Explaining the disease phenotype of intergenic SNP through predicted long range regulation. Nucleic Acids Res 2016; 44(18):8641-54; PMID:27280978 ; https://doi.org/10.1093/nar/gkw519
  • Lemire M, Qu C, Loo LWM, Zaidi SHE, Wang H, Berndt SI, Bézieau S, Brenner H, Campbell PT, Chan AT et al. A genome-wide association study for colorectal cancer identifies a risk locus in 14q23.1. Hum Genet 2015; 134(11-12):1249-62; PMID:26404086; https://doi.org/10.1007/s00439-015-1598-6
  • Biancolella M, Fortini BK, Tring S, Plummer SJ, Mendoza-Fandino GA, Hartiala J, Hitchler MJ, Yan C, Schumacher FR, Conti DV et al. Identification and characterization of functional risk variants for colorectal cancermapping to chromosome 11q23.1. Hum Mol Genet 2014; 23(8):2198-209; PMID:24256810; https://doi.org/10.1093/hmg/ddt584
  • Butter F, Davison L, Viturawong T, Scheibe M, Vermeulen M, Todd JA, Mann M. Proteome-wide analysis of disease-associated SNPs that show allele-specific transcription factor binding. PLoS Genet 2012; 8(9):e1002982; PMID:23028375; https://doi.org/10.1371/journal.pgen.1002982
  • Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genomeengineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 2015; 8:57; PMID:26719772; https://doi.org/10.1186/s13072-015-0050-4
  • Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, Beckwith CA, Chan JA, Hills A, Davis M et al. The 8q24 cancer risk variant rs6983267 demonstrates long-range interaction with MYC in colorectal cancer. Nat Genet 2009; 41(8):882-4; PMID:19561607 ; https://doi.org/10.1038/ng.403
  • Gebhard C, Benner C, Ehrich M, Schwarzfischer L, Schilling E, Klug M, Dietmaier W, Thiede C, Holler E, Andreesen R et al. General transcription factor binding at CpG islands in normal cells correlates with resistance to de novo DNA methylation in cancer cells. Cancer Res 2010; 70(4):1398-407; PMID:20145141; https://doi.org/10.1158/0008-5472.CAN-09-3406
  • Takeshima H, Yamashita S, Shimazu T, Niwa T, Ushijima T. The presence of RNA polymerase II, active or stalled, predicts epigenetic fate of promoter CpG islands. Genome Res 2009; 19(11):1974-82; PMID:19652013; https://doi.org/10.1101/gr.093310.109
  • Blattler A, Farnham PJ. Cross-talk between site-specific transcription factors and DNA methylation states. J Biol Chem 2013; 288(48):34287-94; PMID:24151070; https://doi.org/10.1074/jbc.R113.512517
  • Jackstadt R, Röh S, Neumann J, Jung P, Hoffmann R, Horst D, Berens C, Bornkamm GW, Kirchner T, Menssen A et al. AP4 is a mediator of epithelial-mesenchymal transition and metastasis in colorectal cancer. J Exp Med 2013; 210(7):1331-50; PMID:23752226; https://doi.org/10.1084/jem.20120812
  • Chen H, Shen Z, Hu Y, Xiao Q, Bei D, Shen X, Ding K. Association between MutL homolog 1 polymorphisms and the risk of colorectal cancer: a meta-analysis. J Cancer Res Clin Oncol 2015; 141(12):2147-58; PMID:25986311; https://doi.org/10.1007/s00432-015-1976-4
  • Edgar R, Tan PP, Portales-Casamar E, Pavlidis P. Meta-analysis of human methylomes reveals stably methylated sequences surrounding CpG islands associated with high gene expression. Epigenetics Chromatin 2014; 7(1):28; PMID:25493099; https://doi.org/10.1186/1756-8935-7-28
  • Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet 2014; 15(4):272-86; PMID:24614317; https://doi.org/10.1038/nrg3682

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.