2,434
Views
15
CrossRef citations to date
0
Altmetric
Review

Do social insects support Haig's kin theory for the evolution of genomic imprinting?

, , &
Pages 725-742 | Received 08 May 2017, Accepted 26 Jun 2017, Published online: 13 Dec 2017

References

  • Haig D. The kinship theory of genomic imprinting. Annual review of ecology and systematics 2000; 9-32 doi:10.1146/annurev.ecolsys.31.1.9
  • Hurst LD. Evolutionary theories of genomic imprinting. In W. Reik and A. Surani, editors, Genomic imprinting. IRL Press, Oxford, 1997.
  • Patten MM, Ross L, Curley JP, Queller DC, Bonduriansky R, Wolf JB. The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity 2014; 113(2):119-28; PMID:24755983; https://doi.org/10.1038/hdy.2014.29
  • Queller DC. Theory of genomic imprinting conflict in social insects. BMC Evol Biol 2003; 3(1):1; PMID:12515583; https://doi.org/10.1186/1471-2148-3-15
  • Spencer HG, Clark AG. Non-conflict theories for the evolution of genomic imprinting. Heredity 2014; 113(2):112-8; PMID:24398886; https://doi.org/10.1038/hdy.2013.129
  • Ubeda F. Evolution of genomic imprinting with biparental care: Implications for Prader-Willi and Angelman syndromes. PLoS Biol 2008; 6(8):e208; https://doi.org/10.1371/journal.pbio.0060208
  • George C, Hui KYH, Scorza R, Nip W-K. Transgenic Plants and Crops. CRC Press, March 2002. ISBN 978-0-203-91097-9.
  • Voon HPJ, Gibbons RJ. Maintaining memory of silencing at imprinted differentially methylated regions. Cell Mol Life Sci 2016; 73(9):1871-79; PMID:26883803; https://doi.org/10.1007/s00018-016-2157-6
  • Martienssen RA, Colot V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 2001; 293(5532):1070-4; PMID:11498574; https://doi.org/10.1126/science.293.5532.1070
  • Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 2007; 23(4):192-9; PMID:17316885; https://doi.org/10.1016/j.tig.2007.02.004
  • Joanis V, Lloyd V. Genomic imprinting in Drosophila is maintained by the products of suppressor of variegation and trithorax group, but not polycomb group, genes. Mol Genet Genomics 268(1):103-12, 2002; PMID:12242505; https://doi.org/10.1007/s00438-002-0731-0
  • Coolon JD, Stevenson KR, McManus CJ, Graveley BR, Wittkopp PJ. Genomic Imprinting absent in Drosophila melanogaster adult females. Cell Rep 2012; 2(1):69-75. ISSN 22111247. URL http://linkinghub.elsevier.com/retrieve/pii/S2211124712001738; https://doi.org/10.1016/j.celrep.2012.06.013
  • Wood AJ, Oakey RJ. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2006; 2(11):e147; PMID:17121465; https://doi.org/10.1371/journal.pgen.0020147
  • Hamilton WD. The genetical evolution of social behaviour. I. J Theor Biol 1964; 7:1-16. URL https://doi.org/10.1016/0022-5193(64)90038-4
  • Haig D. Placental hormones, genomic imprinting, and maternal—fetal communication. J Evolutionary Biology 1996; 9(3):357-380; https://doi.org/10.1046/j.1420-9101.1996.9030357.x
  • Wilkins JF, Haig D. Inbreeding, maternal care and genomic imprinting. J Theor Biol 2003; 221(4):559-64; PMID:12713940; https://doi.org/10.1006/jtbi.2003.3206
  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA. Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene mest. Nat Genet 1998; 20(2):163-9; PMID:9771709; https://doi.org/10.1038/2464
  • Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol 2002; 192(3):245-58. ISSN 0021-9541, 1097-4652. https://doi.org/10.1002/jcp.10129. URL http://doi.wiley.com/10.1002/jcp.10129
  • Ogunwuyi O, Upadhyay A, Adesina SK, Puri R, Foreman TM, Hauser BR, Cox J, Afoakwah E, Porter A, Annan E, et al. Genetic imprinting: Comparative analysis between plants and mammals. Plant Tissue Culture and Biotechnology 2016; 26(2):267-84; https://doi.org/10.3329/ptcb.v26i2.30576
  • Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philosophical Transactions of the Royal Society B: Biological Sciences 2012; 368(1609):20120151-20120151. ISSN 0962-8436, 1471-2970; URL http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2012.0151; https://doi.org/10.1098/rstb.2012.0151
  • Gehring M. Genomic imprinting: insights from plants. Genetics 2013; 47(1):187; https://doi.org/10.1146/annurev-genet-110711-155527
  • Keverne EB. Importance of the matriline for genomic imprinting, brain development and behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences 2012; 368(1609):20110327-20110327. ISSN 0962-8436, 1471-2970. https://doi.org/10.1098/rstb.2011.0327. URL http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2011.0327
  • Swaney WT, Curley JP, Champagne FA, Keverne EB. Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. Proc Natl Acad Sci U S A 2007; 104(14):6084-9. ISSN 0027-8424, 1091-6490. https://doi.org/10.1073/pnas.0609471104. URL http://www.pnas.org/cgi/doi/10.1073/pnas.0609471104
  • Jahnke S, Scholten S. Epigenetic resetting of a gene imprinted in plant embryos. Curr Biol 2009; 19(19):1677-81. ISSN 09609822; PMID:19781944; https://doi.org/10.1016/j.cub.2009.08.053. URL http://linkinghub.elsevier.com/retrieve/pii/S0960982209016303
  • Waters AJ, Makarevitch I, Eichten SR, Swanson-Wagner RA, Yeh C-T, Xu W, Schnable PS, Vaughn MW, Gehring M, Springer NM. Parent-of-Origin effects on gene expression and DNA Methylation in the maize endosperm. Plant Cell 2011; 23(12):4221-33. ISSN 1040-4651, 1532-298X. URL http://www.plantcell.org/cgi/doi/10.1105/tpc.111.092668; https://doi.org/10.1105/tpc.111.092668
  • Gehring M, Missirian V, Henikoff S. Genomic analysis of Parent-of-Origin allelic expression in Arabidopsis thaliana seeds. PLoS ONE 2011; 6(8):e23687. ISSN 1932-6203. URL http://dx.plos.org/10.1371/journal.pone.0023687; https://doi.org/10.1371/journal.pone.0023687
  • Rodrigues JA, Zilberman D. Evolution and function of genomic imprinting in plants. Genes Dev 2015; 29(24):2517-2531
  • Satyaki PRV, Gehring M. DNA methylation and imprinting in plants: machinery and mechanisms. Crit Rev Biochem Mol Biol 2017; 52(2):163-75; PMID:28118754; https://doi.org/10.1080/10409238.2017.1279119
  • Galbraith DA, Yi SV, Grozinger CM. Evaluation of possible proximate mechanisms underlying the kinship theory of intragenomic conflict in social insects. Integr Comp Biol 2016; 56(6):1206-14; PMID:27940613; https://doi.org/10.1093/icb/icw111
  • Yan H, Bonasio R, Simola DF, Liebig J, Berger SL, Reinberg D. DNA methylation in social insects: how epigenetics can control behavior and longevity. Annu Rev Entomol 2015; 60:435-52; PMID:25341091; https://doi.org/10.1146/annurev-ento-010814-020803
  • Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, Maleszka R. The honey bee epigenomes: differential methylation of brain DNA in queens and workers. PLoS Biol 2010; 8(11):e1000506
  • Jeltsch A, Jurkowska RZ. New concepts in DNA methylation. Trends Biochem Sci 2014; 39(7):310-8; PMID:24947342; https://doi.org/10.1016/j.tibs.2014.05.002
  • Lyko F, Maleszka R. Insects as innovative models for functional studies of DNA methylation. Trends Genet 2011; 27(4):127-31; PMID:21288591; https://doi.org/10.1016/j.tig.2011.01.003
  • Foret S, Kucharski R, Pellegrini M, Feng S, Jacobsen SE, Robinson GE, Maleszka R. DNA methylation dynamics, metabolic fluxes, gene splicing, and alternative phenotypes in honey bees. Proc Natl Acad Sci U S A 2012; 109(13):4968-73; https://doi.org/10.1073/pnas.1202392109
  • Bonasio R, Li Q, Lian J, Mutti NS, Jin L, Zhao H, Zhang P, Wen P, Xiang H, Ding Y, et al. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr Biol 2012; 22(19):1755-64; PMID:22885060; https://doi.org/10.1016/j.cub.2012.07.042
  • Sadd BM, Barribeau SM, Bloch G, de Graaf DC, Dearden P, Elsik CG, Gadau J, Grimmelikhuijzen CJ, Hasselmann M, Lozier JD, et al. The genomes of two key bumblebee species with primitive eusocial organization. Genome Biol 2015; 16(1):1
  • Wojciechowski M, Rafalski D, Kucharski R, Misztal K, Maleszka J, Bochtler M, Maleszka R. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of tet dioxygenase. Open Biol 2014; 4(8):140110
  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011; 333(6047):1300-3; PMID:21778364.
  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG, Hetzel J, Jain J, Strauss SH, Halpern ME, et al. Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci USA 2010; 107(19):8689-94; https://doi.org/10.1073/pnas.1002720107
  • Wang X, Wheeler D, Avery A, Rago A, Choi JH, Colbourne JK, Clark AG, Werren JH. Function and evolution of DNA methylation in Nasonia vitripennis. PLoS Genet 2013; 9(10):e1003872; PMID:24130511
  • Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 2011; 25(10):1010-22; https://doi.org/10.1101/gad.2037511
  • Meissner A1, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 2008; 454(7205):766-70; PMID:18600261
  • Borgel J, Guibert S, Li Y, Chiba H, Schübeler D, Sasaki H, Forné T, Weber M. Targets and dynamics of promoter DNA methylation during early mouse development. Nature Genet 2010; 42(12):1093-100; PMID:21057502
  • Weber M, Hellmann I, Stadler MB, Ramos L, Pääbo S, Rebhan M, Schübeler D. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genet 2007; 39(4):457-66; PMID:17334365; https://doi.org/10.1038/ng1990
  • Hellman A, Chess A. Gene body-specific methylation on the active X chromosome. Science 2007; 315(5815):1141-43; PMID:17322062; https://doi.org/10.1126/science.1136352
  • Anastasiadou C, Malousi A, Maglaveras N, Kouidou S. Human epigenome data reveal increased CpG methylation in alternatively spliced sites and putative exonic splicing enhancers. DNA Cell Biol 2011; 30(5):267-75; PMID:21545276; https://doi.org/10.1089/dna.2010.1094
  • Patalano S, Hore TA, Reik W, Sumner S. Shifting behaviour: epigenetic reprogramming in eusocial insects. Curr Opin Cell Biol 2012; 24(3):367-73; PMID:22429916; https://doi.org/10.1016/j.ceb.2012.02.005
  • Chittka A, Wurm Y, Chittka L. Epigenetics: the making of ant castes. Curr Biol 2012; 22(19):R835-38; PMID:23058801; https://doi.org/10.1016/j.cub.2012.07.045
  • Herb BR, Wolschin F, Hansen KD, Aryee MJ, Langmead B, Irizarry R, Amdam GV, Feinberg AP. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat Neurosci 2012; 15(10):1371-73; PMID:22983211
  • Shi YY, Huang ZY, Zeng ZJ, Wang ZL, Wu XB, Yan WY. Diet and cell size both affect queen-worker differentiation through DNA methylation in honey bees (Apis mellifera, apidae). PloS One 2011; 6(4): e18808
  • Sumner S, Kelstrup H, Fanelli D. Reproductive constraints, direct fitness and indirect fitness benefits explain helping behaviour in the primitively eusocial wasp, Polistes canadensis. Proc Biol Sci 2010; 277(1688):1721-8. page rspb20092289
  • Glastad KM, Hunt BG, Yi SV, Goodisman MA. DNA methylation in insects: on the brink of the epigenomic era. Insect Mol Biol 2011; 20(5):553-65; PMID:21699596; https://doi.org/10.1111/j.1365-2583.2011.01092.x
  • Zwier MV, Verhulst EC, Zwahlen RD, Beukeboom LW, van de Zande L. DNA methylation plays a crucial role during early Nasonia development. Insect Mol Biol 2012; 21(1):129-38; PMID:22122805; https://doi.org/10.1111/j.1365-2583.2011.01121.x
  • Arand J, Spieler D, Karius T, Branco MR, Meilinger D, Meissner A, Jenuwein T, Xu G, Leonhardt H, Wolf V, et al. In vivo control of CpG and non-CpG DNA methylation by DNA methyl- transferases. PLoS Genet 2012; 8(6):e1002750
  • Libbrecht R, Oxley PR, Keller L, Kronauer DJ. Robust DNA methylation in the clonal raider ant brain. Curr Biol 2016; 26(3):391-5; PMID:26804553
  • Glastad KM, Hunt BG, Yi SV, Goodisman MA. Epigenetic inheritance and genome regulation: is DNA methylation linked to ploidy in haplodiploid insects? Proceedings of the Royal Society of London B: Biological Sciences 2014; 281(1785):20140411; https://doi.org/10.1098/rspb.2014.0411
  • Patalano S, Vlasova A, Wyatt C, Ewels P, Camara F, Ferreira PG, Asher CL, Jurkowski TP, Segonds-Pichon A, Bachman M, et al. Molecular signatures of plastic phenotypes in two eusocial insect species with simple societies. Proc Natl Acad Sci U S A 2015; 112(45):13970-5; https://doi.org/10.1073/pnas.1515937112
  • Amarasinghe HE, Clayton CI, Mallon EB. Methylation and worker reproduction in the bumble-bee (Bombus terrestris). In Proc Biol Sci 2014; 281:20132502
  • Lockett GA, Wilkes F, Maleszka R. Brain plasticity, memory and neurological disorders: an epigenetic perspective. Neuroreport 2010; 21(14): 909-13; PMID:20717061; https://doi.org/10.1097/WNR.0b013e32833e9288
  • Biergans SD, Jones JC, Treiber N, Galizia CG, Szyszka P. DNA methylation mediates the discriminatory power of associative long-term memory in honeybees. PloS One 2012; 7(6):e39349
  • Li-Byarlay H, Li Y, Stroud H, Feng S, Newman TC, Kaneda M, Hou KK, Worley KC, Elsik CG, Wickline SA, et al. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proc Natl Acad Sci U S A 2013; 110(31):12750-55; https://doi.org/10.1073/pnas.1310735110
  • Lockett GA, Kucharski R, Maleszka R. DNA methylation changes elicited by social stimuli in the brains of worker honey bees. Genes, Brain and Behavior 2012; 11(2):235-42. ISSN 16011848; https://doi.org/10.1111/j.1601-183X.2011.00751.x
  • Park J, Peng Z, Zeng J, Elango N, Park T, Wheeler D, Werren JH, Yi SV. Comparative analyses of DNA methylation and sequence evolution using Nasonia genomes. Mol Biol Evol 2011; 28(12):3345-54; PMID:21693438
  • Libbrecht R, Oxley PR, Keller L, Kronauer DJ. Robust DNA methylation in the clonal raider ant brain. Curr Biol 2016; 26(3):391-5. ISSN 09609822; https://doi.org/10.1016/j.cub.2015.12.040. URL http://linkinghub.elsevier.com/retrieve/pii/S0960982215015717.
  • Hunt BG, Brisson JA, Yi SV, Goodisman MA. Functional conservation of DNA methylation in the pea aphid and the honeybee. Genome Biol Evol 2010; 2:719-28; PMID:20855427
  • Glastad KM, Gokhale K, Liebig J, Goodisman MA. The caste- and sex-specific DNA methylome of the termite Zootermopsis nevadensis. Sci Rep 2016; 6:37110. ISSN 2045-2322; https://doi.org/10.1038/srep37110. URL http://www.nature.com/articles/srep37110.
  • Elango N, Hunt BG, Goodisman MA, Yi SV. DNA methylation is widespread and associated with differential gene expression in castes of the honeybee, Apis mellifera. Proc Natl Acad Sci U S A 2009; 106(27):11206-11; https://doi.org/10.1073/pnas.0900301106
  • Liu Y1, Toh H, Sasaki H, Zhang X, Cheng X. An atomic model of ZFP57 recognition of CpG methylation within a specific DNA sequence. Genes Dev 2012; 26(21):2374-79; https://doi.org/10.1101/gad.202200.112
  • Min HY, Lee SC, Woo JK, Jung HJ, Park KH, Jeong HM, Hyun SY, Cho J, Lee W, Park JE, et al. Essential role of DNA methyltransferase 1-mediated transcription of Insulin-like growth factor 2 in resistance to histone deacetylase inhibitors. Clin Cancer Res 2016; 23(5):1299-311. pages clincanres–0534.
  • Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 2011; 479(7371):74-9; PMID:21964334
  • Luco RF, Allo M, Schor IE, Kornblihtt AR, Misteli T. Epigenetics in alternative pre-mRNA splicing. Cell 2011; 144(1):16-26; PMID:21215366
  • Perales R, Bentley D. “Co-transcriptionality:” the transcription elongation complex as a nexus for nuclear transactions. Mol Cell 2009; 36(2):178-91; PMID:19854129; https://doi.org/10.1016/j.molcel.2009.09.018
  • Maunakea AK, Chepelev I, Cui K, Zhao K. Intragenic DNA methylation modulates alternative splicing by recruiting MECP2 to promote exon recognition. Cell Res 2013; 23(11):1256-69; PMID:23938295; https://doi.org/10.1038/cr.2013.110
  • Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suvà ML, Bernstein BE. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 2016; 529(7584):110-4; PMID:26700815
  • Guy J, Cheval H, Selfridge J, Bird A. The role of MECP2 in the brain. Annu Rev Cell Dev Biol 2011; 27:631-52; PMID:21721946
  • Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010; 328(5980):916-9; PMID:20395474; https://doi.org/10.1126/science.1186366
  • Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 2008; 456(7218):125-29; PMID:18815594; https://doi.org/10.1038/nature07324
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10(5):295-304; PMID:19308066; https://doi.org/10.1038/nrg2540
  • Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C, Ray A, Zwiebel LJ, Bonasio R, Reinberg D, Liebig J, et al. Epigenetic (re) programming of caste-specific behavior in the ant Camponotus floridanus. Science 2016; 351(6268):aac6633; PMID:26722000; https://doi.org/10.1126/science.aac6633
  • Bonasio R. Emerging topics in epigenetics: ants, brains, and noncoding RNAs. Ann N Y Acad Sci 2012; 1260(1):14-23; PMID:22239229; https://doi.org/10.1111/j.1749-6632.2011.06363.x
  • Ashby R, Forêt S, Searle I, Maleszka R. microRNAs in honey bee caste determination. Sci Rep 2016; 6:18794
  • Greenberg JK, Xia J, Zhou X, Thatcher SR, Gu X, Ament SA, Newman TC, Green PJ, Zhang W, Robinson GE, et al. Behavioral plasticity in honey bees is associated with differences in brain microRNA transcriptome. Genes Brain Behav 2012; 11(6):660-670; https://doi.org/10.1111/j.1601-183X.2012.00782.x
  • Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, et al. Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse RASGRF1 locus. Science 2011; 332 (6031):848-52; PMID:21566194; https://doi.org/10.1126/science.1203919
  • Kiya T, Ugajin A, Kunieda T, Kubo T. Identification of kakusei, a nuclear non-coding RNA, as an immediate early gene from the honeybee, and its application for neuroethological study. Int J Mol Sci 2012; 13(12):15496-509; PMID:23443077; https://doi.org/10.3390/ijms131215496
  • Tadano H, Yamazaki Y, Takeuchi H, Kubo T. Age and division-of-labour dependent differential expression of a novel non-coding RNA, Nb-1, in the brain of worker honeybees, Apis mellifera. Insect Mol Biol 2009; 18(6):715-26; PMID:19817910; https://doi.org/10.1111/j.1365-2583.2009.00911.x
  • Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics 2016; 291(3):1013-33; PMID:26885843; https://doi.org/10.1007/s00438-016-1179-y
  • Kanduri C. Long noncoding RNAs: Lessons from genomic imprinting. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms 2016; 1859(1):102-11; https://doi.org/10.1016/j.bbagrm.2015.05.006
  • Mohammad F, Mondal T, Kanduri C. Epigenetics of imprinted long non-coding RNAs. Epigenetics 2009; 4(5):277-86; https://doi.org/10.4161/epi.4.5.9242
  • Barlow DP, Bartolomei MS. Genomic imprinting in mammals. Cold Spring Harb Perspect Biol 2014; 6(2):a018382; PMID:24492710; https://doi.org/10.1101/cshperspect.a018382
  • Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 2011; 12(8):565-75; PMID:21765458; https://doi.org/10.1038/nrg3032
  • Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014; 28(8):812-28; https://doi.org/10.1101/gad.234294.113
  • Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48(6):849-62; PMID:23219530
  • Kagiwada S, Kurimoto K, Hirota T, Yamaji M, Saitou M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J 2013; 32(3):340-53; PMID:23241950
  • Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M, et al. Combined deficiency of TET1 and TET2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 2013; 24(3):310-23; PMID:23352810; https://doi.org/10.1016/j.devcel.2012.12.015
  • Strogantsev R, Ferguson-Smith AC. Proteins involved in establishment and maintenance of imprinted methylation marks. Brief Funct Genomics 2012; 11(3):227-39; PMID:22760206; https://doi.org/10.1093/bfgp/els018
  • Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Phil. Trans. R. Soc. B 2013; 368(1609):20110336
  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Embryogenesis: demethylation of the zygotic paternal genome. Nature 2000; 403(6769): 501-2; PMID:10676950
  • Oswald J, Engemann S, Lane N, Mayer W, Olek A, Fundele R, Dean W, Reik W, Walter J. Active demethylation of the paternal genome in the mouse zygote. Curr Biol 2000; 10(8):475-8; PMID:10801417; https://doi.org/10.1016/S0960-9822(00)00448-6
  • Santos F, Hendrich B, Reik W, Dean W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 2002; 241(1):172-82; PMID:11784103; https://doi.org/10.1006/dbio.2001.0501
  • Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction 2004; 127(6):643-51; PMID:15175501; https://doi.org/10.1530/rep.1.00221
  • Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, et al. The role of TET3 DNA Dioxygenase in epigenetic reprogramming by oocytes. Nature 2011; 477(7366):606-10; PMID:21892189; https://doi.org/10.1038/nature10443
  • Inoue A, Zhang Y. Replication-dependent loss of 5- hydroxymethylcytosine in mouse preimplantation embryos. Science 2011; 334 (6053):194-194; PMID:21940858; https://doi.org/10.1126/science.1212483
  • Inoue A, Shen L, Dai Q, He C, Zhang Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res 2011; 21(12):1670-76; PMID:22124233; https://doi.org/10.1038/cr.2011.189
  • Hashimoto H, Liu Y, Upadhyay AK, Chang Y, Howerton SB, Vertino PM, Zhang X, Cheng X. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation. Nucleic Acids Res 2012; 40(11):4841-9, page gks155
  • Nakamura T, Liu YJ, Nakashima H, Umehara H, Inoue K, Matoba S, Tachibana M, Ogura A, Shinkai Y, Nakano T. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 2012; 486(7403):415-9; PMID:22722204
  • Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H. Maternal and zygotic DNMT1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 2008; 22(12):1607-16; https://doi.org/10.1101/gad.1667008
  • Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Kru¨ppel-associated Box Zinc finger protein family. Mob DNA 2015; 6(1):1
  • Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J, Offner S, Baglivo I, Pedone PV, Grimaldi G, Riccio A, et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 2011; 44(3):361-72; PMID:22055183; https://doi.org/10.1016/j.molcel.2011.08.032
  • Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 2011; 286(30):26267-76; PMID:21652716; https://doi.org/10.1074/jbc.R111.252569
  • Zuo X, Sheng J, Lau HT, McDonald CM, Andrade M, Cullen DE, Bell FT, Iacovino M, Kyba M, Xu G, et al. Zinc Finger Protein ZFP57 requires its co-factor to recruit DNA Methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 2012; 287(3):2107-18; PMID:22144682; https://doi.org/10.1074/jbc.M111.322644
  • Strogantsev R, Krueger F, Yamazawa K, Shi H, Gould P, Goldman-Roberts M, McEwen K, Sun B, Pedersen R, Ferguson-Smith AC. Allele-specific binding of ZFP57 in the epigenetic regulation of imprinted and non-imprinted monoallelic expression. Genome Biol 2015; 16 (1):1; PMID:26025256
  • Messerschmidt D. Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 2012; 7(9):969-75; PMID:22869105
  • Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. Setdb1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to Hp1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 2002; 16(8):919-32
  • Tomizawa S, Kobayashi H, Watanabe T, Andrews S, Hata K, Kelsey G, Sasaki H. Dynamic stage-specific changes in imprinted differentially methylated regions during early mammalian development and prevalence of non-CpG methylation in oocytes. Development 2011; 138 (5):811-20; PMID:21247965
  • Kobayashi H1, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, et al. Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 2012; 8(1):e1002440
  • Li X, Ito M, Zhou F, Youngson N, Zuo X, Leder P, Ferguson-Smith AC. A maternal-zygotic effect gene, ZFP57, maintains both maternal and paternal imprints. Dev Cell 2008; 15(4):547-57; PMID:18854139
  • Singh P, Wu X, Lee DH, Li AX, Rauch TA, Pfeifer GP, Mann JR, Szabó PE. Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol 2011; 31(8):1757-70; PMID:21321082
  • Li BZ, Huang Z, Cui QY, Song XH, Du L, Jeltsch A, Chen P, Li G, Li E, Xu GL. Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Res 2011; 21(8):1172-81; PMID:21606950
  • Baubec T, Colombo DF, Wirbelauer C, Schmidt J, Burger L, Krebs AR, Akalin A, Schübeler D. Genomic profiling of DNA methyltransferases reveals a role for DNMT3b in genic methylation. Nature 2015; 520(7546):243-47; PMID:25607372
  • Morselli M, Pastor WA, Montanini B, Nee K, Ferrari R, Fu K, Bonora G, Rubbi L, Clark AT, Ottonello S, et al. In vivo targeting of de novo DNA methylation by histone modifications in yeast and mouse. Elife 2015; 4:e06205; PMID:25848745; https://doi.org/10.7554/eLife.06205
  • Venkatesh S, Smolle M, Li H, Gogol MM, Saint M, Kumar S, Natarajan K, Workman JL. Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes. Nature 2012; 489(7416):452-55; PMID:22914091; https://doi.org/10.1038/nature11326
  • Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with Hp1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003; 31(9):2305-12; PMID:12711675; https://doi.org/10.1093/nar/gkg332
  • Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the Hp1 chromo domain. Nature 2001; 410(6824):120-24; PMID:11242054; https://doi.org/10.1038/35065138
  • Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for Hp1 proteins. Nature 2001; 410(6824):116-20; PMID:11242053; https://doi.org/10.1038/35065132
  • Voon HP, Hughes JR, Rode C, De La Rosa-Velázquez IA, Jenuwein T, Feil R, Higgs DR, Gibbons RJ. ATRX plays a key role in maintaining silencing at interstitial heterochromatic loci and imprinted genes. Cell Rep 2015; 11(3):405-18; PMID:25865896; https://doi.org/10.1016/j.celrep.2015.03.036
  • Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, et al. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 2010; 140(5):678-91; PMID:20211137; https://doi.org/10.1016/j.cell.2010.01.003
  • Dhayalan A, Tamas R, Bock I, Tattermusch A, Dimitrova E, Kudithipudi S, Ragozin S, Jeltsch A. The ATRX-ADD domain binds to H3 tail peptides and reads the combined methylation state of H4 and K9. Hum Mol Genet 2011; 20(11):2195-203; PMID:21421568; https://doi.org/10.1093/hmg/ddr107
  • Elsässer SJ, Noh KM, Diaz N, Allis CD, Banaszynski LA. Histone H3.3 is required for endogenous retroviral element silencing in embryonic stem cells. Nature 2015, 522(7555):240-44; PMID:25938714; https://doi.org/10.1038/nature14345
  • Kucharski R, Foret S, Maleszka R. EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Sci Rep 2015; 5
  • Richards EJ. Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 2006; 7(5):395-401; PMID:16534512; https://doi.org/10.1038/nrg1834
  • Remy JJ. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr Biol 2010; 20(20):R877-78; PMID:20971427; https://doi.org/10.1016/j.cub.2010.08.013
  • JShorter JR, Arechavaleta-Velasco M, Robles-Rios C, Hunt GJ. A genetic analysis of the stinging and guarding behaviors of the honey bee. Behav Genet 2012; 42(4):663-74; PMID:22327626; https://doi.org/10.1007/s10519-012-9530-5
  • Oldroyd BP, Allsopp MH, Roth KM, Remnant EJ, Drewell RA, Beekman M. A parent-of-origin effect on honey- bee worker ovary size. Proceedings of the Royal Society of London B: Biological Sciences 2014; 281(1775):20132388
  • Stort AC, Goncalves LS. Genetics of defensive behavior. In The “African” honey bee, pages 329-56. Westview Press, Boulder, CO, spivak m, fletcher djc, and breed md, eds edition, 1991.
  • Guzman-Novoa E, Page RE. Backcrossing Africanized honey bee queens to European drones reduces colony defensive behavior. Annals of the Entomological Society of America 1993; 86(3):352-55. ISSN 0013-8746, 1938-2901. URL https://academic.oup.com/aesa/article-lookup/doi/10.1093/aesa/86.3.352; https://doi.org/10.1093/aesa/86.3.352
  • DeGrandi-Hoffman G, Collins A, Martin JH, Schmidt JO, Spangler H. Nest defense behavior in colonies from crosses between Africanized and European Honey Bees (Apis mellifera L.) (Hymenoptera: Apidae). Journal of Insect Behaviour 1998; 11(1):37-45; https://doi.org/10.1023/A:1020862432087
  • Guzman-Novoa E, Hunt GJ, Page RE, Uribe-Rubio JL, Prieto-Merlos D, Becerra-Guzman F. Paternal effects on the defensive behavior of honeybees. J Hered 2005; 96(4):376-80
  • Beukeboom LW, van den Assem J. Courtship and mating behaviour of interspecific Nasonia hybrids (Hymenoptera, Pteromalidae): a grandfather effect. Behaviour Genetics 2001; 31(2):167-77; https://doi.org/10.1023/A:1010201427204
  • Keller L. Adaptation and the genetics of social behaviour. Philos Trans R Soc Lond B Biol Sci 2009; 364(1533):3209-16, ISSN 0962-8436, 1471-2970. URL http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.2009.0108; https://doi.org/10.1098/rstb.2009.0108
  • Libbrecht R, Keller L. Genetic Compatibility affects division of labor in the argentine ant Linepithema humile. Evolution 2013; 67(2):517-24. ISSN 00143820. URL http://doi.wiley.com/10.1111/j.1558-5646.2012.01792.x; https://doi.org/10.1111/j.1558-5646.2012.01792.x
  • Libbrecht R, Schwander T, Keller L. Genetic components to caste allocation in a multiple-queen ant species. Evolution 2011; 65(10):2907-15, ISSN 00143820. URL http://doi.wiley.com/10.1111/j.1558-5646.2011.01348.x; PMID:22023572; https://doi.org/10.1111/j.1558-5646.2011.01348.x
  • Anderson RH. The laying worker in the cape honeybee, Apis mellifera capensis. Journal of Apicultural Research 1963; 2(2):85-92. ISSN 0021-8839, 2078-6913. https://doi.org/10.1080/00218839.1963.11100065. URL http://www.tandfonline.com/doi/full/10.1080/00218839.1963.11100065
  • Galbraith DA, Kocher SD, Glenn T, Albert I, Hunt GJ, Strassmann JE, Queller DC, Grozinger CM. Testing the kinship theory of intragenomic conflict in honey bees (Apis mellifera). Proc Natl Acad Sci U S A 2016; 113(4):1020-25
  • Kocher SD, Tsuruda JM, Gibson JD, Emore CM, Arechavaleta-Velasco ME, Queller DC, Strassmann JE, Grozinger CM, Gribskov MR, San Miguel P, et al. A search for parent-of-origin effects on honey bee gene expression. G3: Genes—Genomes—Genetics 2015; 5(8):1657-62; https://doi.org/10.1534/g3.115.017814
  • Amarasinghe HE, Toghill BJ, Nathanael D, Mallon EB. Allele specific expression in worker reproduction genes in the bumblebee Bombus terrestris. PeerJ 2015; 3:e1079; https://doi.org/10.7717/peerj.1079
  • Geva S, Hartfelder K, Bloch G. Reproductive division of labor, dominance, and ecdysteroid levels in hemolymph and ovary of the bumble bee Bombus terrestris. J Insect Physiol 2005; 51(7):811-23; PMID:15885700; https://doi.org/10.1016/j.jinsphys.2005.03.009
  • Cardoen D, Wenseleers T, Ernst UR, Danneels EL, Laget D, DE Graaf DC, Schoofs L, Verleyen P. Genome-wide analysis of alternative reproductive phenotypes in honeybee workers. Molecular Ecology 2011; 20(19):4070-84; PMID:21902748
  • Page RE Jr, Amdam GV. The making of a social insect: developmental architectures of social design. Bioessays 2007; 29(4):334-43; PMID:17373656
  • Mullen EK, Daley M, Backx AG, Thompson GJ. Gene co-citation networks associated with worker sterility in honey bees. BMC Syst Biol 2014; 8(1):1
  • Gibson JD, Arechavaleta-Velasco ME, Tsuruda JM, Hunt GJ. Biased allele expression and aggression in hybrid honeybees may be influ- enced by inappropriate nuclear-cytoplasmic signaling. Frontiers Genet 2015; 6
  • Linksvayer TA, Rueppell O, Siegel A, Kaftanoglu O, Page RE Jr, Amdam GV. The genetic basis of transgressive ovary size in honeybee workers. Genetics 2009; 183(2):693-707; PMID:19620393
  • Verhulst EC, Beukeboom LW, van de Zande L. Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 2010; 328(5978):620-23; PMID:20431014
  • Kumano G. Polarizing animal cells via mRNA localization in oogenesis and early development. Dev Growth Differ 2012; 54(1):1-18
  • Galbraith DA, Yi SV, Grozinger CM. Evaluation of possible proximate mechanisms underlying the kinship theory of intragenomic conflict in social insects. Integr Comp Biol 2016; 56(6):1206-14. ISSN 1540-7063, 1557-7023. https://doi.org/10.1093/icb/icw111. URL https://academic.oup.com/icb/article-lookup/doi/10.1093/icb/icw111
  • Drewell RA, Bush EC, Remnant EJ, Wong GT, Beeler SM, Stringham JL, Lim J, Oldroyd BP. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera. Development 2014; 141(13):2702-11; PMID:24924193
  • Remnant EJ, Ashe A, Young PE, Buchmann G, Beekman M, Allsopp MH, Suter CM, Drewell RA, Oldroyd BP. Parent-of-origin effects on genome-wide DNA methylation in the cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation. BMC Genomics 2016; 17(1):1
  • Wedd L, Kucharski R, Maleszka R. Differentially methylated obligatory epialleles modulate context-dependent LAM gene expression in the honeybee Apis mellifera. Epigenetics 2016; 11(1):1-10. ISSN 1559-2294, 1559-2308. https://doi.org/10.1080/15592294.2015.1107695. URL http://www.tandfonline.com/doi/full/10.1080/15592294.2015.1107695
  • Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 2011; 145(3):423-34; PMID:21496894; https://doi.org/10.1016/j.cell.2011.03.022
  • Cortellino S, Xu J, Sannai M, Moore R, Caretti E, Cigliano A, Le Coz M, Devarajan K, Wessels A, Soprano D, et al. Thymine DNA Glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 2011; 146(1):67-79; PMID:21722948; https://doi.org/10.1016/j.cell.2011.06.020
  • Branco MR, Ficz G, Reik W. Uncovering the role of 5- hydroxymethylcytosine in the epigenome. Nat Rev Genet 2012; 13(1):7-13
  • Valinluck V, Sowers LC. Endogenous cytosine damage prod-ucts alter the site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer Res 2007; 67(3):946-50; PMID:17283125; https://doi.org/10.1158/0008-5472.CAN-06-3123
  • Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, Li X, Dai Q, Shen Y, Park B, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 2012; 149(6): 1368-80; PMID:22608086; https://doi.org/10.1016/j.cell.2012.04.027
  • Booth MJ1, Branco MR, Ficz G, Oxley D, Krueger F, Reik W, Balasubramanian S. Quantitative sequencing of 5- methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 2012; 336(6083):934-7; PMID:22539555; https://doi.org/10.1126/science.1220671
  • Booth MJ, Marsico G, Bachman M, Beraldi D, Balasubramanian S. Quantitative sequencing of 5-formylcytosine in DNA at single- base resolution. Nat Chem 2014; 6(5):435; PMID:24755596; https://doi.org/10.1038/nchem.1893
  • Morison IM, Ramsay JP, Spencer HG. A census of mammalian imprinting. Trends Genet 2005; 21(8):457-65; PMID:15990197; https://doi.org/10.1016/j.tig.2005.06.008
  • Raissig MT, Baroux C, Grossniklaus U. Regulation and flexibility of genomic imprinting during seed development. The Plant Cell 2011; 23(1):16-26; PMID:21278124; https://doi.org/10.1105/tpc.110.081018
  • Lloyd V. Parental imprinting in Drosophila. Genetica 2000; 109(1-2):35-44; PMID:11293793; https://doi.org/10.1023/A:1026592318341
  • McGowan RA, Martin CC. DNA methylation and genome imprinting in the zebrafish, Danio rerio: some evolutionary ramifications. Biochem Cell Biol 75(5):499-506, 1997; PMID:9551175; https://doi.org/10.1139/o97-070
  • Bean CJ, Schaner CE, Kelly WG. Meiotic pairing and imprinted X chromatin assembly in Caenorhabditis elegans. Nature genetics 2004; 36(1):100-5; PMID:14702046; https://doi.org/10.1038/ng1283
  • Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Molecular Endocrinology 2005; 19(3):563-73; PMID:15677708; https://doi.org/10.1210/me.2004-0496
  • Lippman Z, Martienssen R. The role of RNA interference in heterochromatic silencing. Nature 2004 431(7006):364-70; PMID:15372044; https://doi.org/10.1038/nature02875
  • Bongiorni S, Pugnali M, Volpi S, Bizzaro D, Singh PB, Prantera G. Epigenetic marks for chromosome imprinting during spermatogenesis in coccids. Chromosoma 2009; 118(4):501-12; PMID:19458957; https://doi.org/10.1007/s00412-009-0214-8
  • Takayama S, Dhahbi J, Roberts A, Mao G, Heo SJ, Pachter L, Martin DI, Boffelli D. Genome methylation in D. melanogaster is found at specific short motifs and is independent of DNMT2 activity. Genome Res 2014; 24(5):821-30; PMID:24558263; https://doi.org/10.1101/gr.162412.113
  • Rudolph T, Yonezawa M, Lein S, Heidrich K, Kubicek S, Schäfer C, Phalke S, Walther M, Schmidt A, Jenuwein T, et al. Heterochromatin formation in Drosophila is initiated through active removal of H3K4 methylation by the LSD1 homolog SU(VAR)3-3. Mol Cell 2007; 26(1):103-15; PMID:17434130; https://doi.org/10.1016/j.molcel.2007.02.025
  • Kidder BL, Hu G, Zhao K. ChIP-Seq: technical considerations for obtaining high-quality data. Nature Immunology 2011; 12(10):918-22; PMID:21934668; https://doi.org/10.1038/ni.2117
  • ENCODE-Project-Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414):57-74; PMID:22955616; https://doi.org/10.1038/nature11247
  • Shimbo T, Du Y, Grimm SA, Dhasarathy A, Mav D, Shah RR, Shi H, Wade PA. MBD3 localizes at promoters, gene bodies and enhancers of active genes. PLoS Genet 2013; 9(12):e1004028
  • Zentner GE, Henikoff S. High-resolution digital profiling of the epigenome. Nat Rev Genet 2014; 15(12):814-27; PMID:25297728; https://doi.org/10.1038/nrg3798
  • Pepke S, Wold B, Mortazavi A. Computation for ChIP-Seq and RNA-Seq studies. Nat Methods 2009; 6:S22-32; PMID:19844228; https://doi.org/10.1038/nmeth.1371
  • Furey TS. ChIP–Seq and beyond: new and improved methodologies to detect and characterize protein–DNA interactions. Nat Rev Genet 2012; 13(12):840-52; PMID:23090257; https://doi.org/10.1038/nrg3306
  • Shlyueva D, Meireles-Filho ACA, Pagani M, Stark A. Genome-wide Ultrabithorax binding analysis reveals highly targeted genomic loci at developmental regulators and a potential connection to polycomb- mediated regulation. PloS one 2016; 11(8):e0161997.
  • Löser E, Latreille D, Iovino N. Chromatin preparation and chromatin immuno-precipitation from Drosophila embryos. Methods Mol Biol (Clifton, NJ) 2016; 1480:23
  • Lara-Astiaso D, Weiner A, Lorenzo-Vivas E, Zaretsky I, Jaitin DA, David E, Keren-Shaul H, Mildner A, Winter D, Jung S, et al. Chromatin state dynamics during blood formation. Science 2014; 345(6199):943-9; PMID:25103404; https://doi.org/10.1126/science.1256271
  • Blecher-Gonen R, Barnett-Itzhaki Z, Jaitin D, Amann-Zalcenstein D, Lara-Astiaso D, Amit I. High-throughput Chromatin immunoprecipitation for genome-wide mapping of in vivo protein-DNA interactions and epigenomic states. Nat Protoc 2013; 8(3):539-54; PMID:23429716; https://doi.org/10.1038/nprot.2013.023
  • Bassett AR, Liu JL. CRISPR/Cas9 and genome editing in Drosophila. J Genet Genomics 2014; 41(1):7-19; PMID:24480743; https://doi.org/10.1016/j.jgg.2013.12.004
  • Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, et al. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat Biotechnol 2016; 34(1):78-83; PMID:26641531; https://doi.org/10.1038/nbt.3439
  • Dong S, Lin J, Held NL, Clem RJ, Passarelli AL, Franz AW. Heritable CRISPR/Cas9-mediated genome editing in the yellow fever mosquito, Aedes aegypti. PloS One 2015; 10(3):e0122353
  • Gilles AF, Schinko JB, Averof M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum. Development 2015; 142(16):2832-39; PMID:26160901; https://doi.org/10.1242/dev.125054
  • Liu Y, Ma S, Wang X, Chang J, Gao J, Shi R, Zhang J, Lu W, Liu Y, Zhao P, et al. Highly efficient multiplex targeted mutagenesis and genomic structure variation in Bombyx mori cells using CRISPR/Cas9. Insect Biochem Mol Biol 2014; 49:35-42; PMID:24698835; https://doi.org/10.1016/j.ibmb.2014.03.010
  • Li M, Cook LY, Douglah D, Chong A, White BJ, Ferree P, Akbari OS. Generation of heritable germline mutations in the jewel wasp Nasonia vitripennis using CRISPR/Cas9. Scientific Reports 2017; 7(1):901.
  • Kohno H, Suenami S, Takeuchi H, Sasaki T, Kubo T. Production of knockout mutants by CRISPR/Cas9 in the European honeybee, Apis mellifera. Zoolog Sci 2016; 33(5):505-12; PMID:27715425; https://doi.org/10.2108/zs160043
  • Trible W, Chang N-C, Matthews BJ, McKenzie SK, Olivos-Cisneros L, Oxley PR, Saragosti J, Kronauer DJC. orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 2017; 170(4):727-735.
  • Mund C, Musch T, Strödicke M, Assmann B, Li E, Lyko F. Comparative analysis of DNA methylation patterns in transgenic Drosophila overexpressing mouse DNA methyltransferases. Biochem J 2004; 378(3):763-8; PMID:14636159; https://doi.org/10.1042/bj20031567
  • van Steensel B, Delrow J, Henikoff S. Chromatin profiling using targeted DNA Adenine methyltransferase. Nat Genet 2001; 27(3):304-8; PMID:11242113; https://doi.org/10.1038/85871
  • Pindyurin AV, Pagie L, Kozhevnikova EN, van Arensbergen J, van Steensel B. Inducible DamID systems for genomic mapping of chromatin proteins in Drosophila. Nucleic Acids Res 2016; 44(12):5646-57 page gkw176.
  • Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, Shu J, Dadon D, Young RA, Jaenisch R. Editing DNA methylation in the mammalian genome. Cell 2016; 167(1):233-47; PMID:27662091; https://doi.org/10.1016/j.cell.2016.08.056
  • Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, Klasić M, Zoldoš V. Repurposing the CRISPR/Cas9 system for targeted DNA methylation. Nucleic Acids Res 2016; 44(12):5615-28 page gkw159.
  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, et al. A survey of best practices for RNA-Seq data analysis. Genome Biol 2016; 17(1):13
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008; 5(7):621-8; PMID:18516045; https://doi.org/10.1038/nmeth.1226
  • Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT, Kohlbacher O, De Jager PL, Rosen ED, Bennett DA, Bernstein BE, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 2013; 500(7463):477-81; PMID:23925113; https://doi.org/10.1038/nature12433
  • Harris RA, Wang T, Coarfa C, Nagarajan RP, Hong C, Downey SL, Johnson BE, Fouse SD, Delaney A, Zhao Y, et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat Biotechnol 2010; 28 (10):1097-105; PMID:20852635; https://doi.org/10.1038/nbt.1682
  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell 2007; 129(4):823-37; PMID:17512414; https://doi.org/10.1016/j.cell.2007.05.009
  • Leung D, Jung I, Rajagopal N, Schmitt A, Selvaraj S, Lee AY, Yen CA, Lin S, Lin Y, Qiu Y, et al. Integrative analysis of haplotype-resolved epigenomes across human tissues. Nature 2015; 518(7539):350-4; PMID:25693566; https://doi.org/10.1038/nature14217
  • Yan H, Tian S, Slager SL, Sun Z, Ordog T. Genome-wide epigenetic studies in human disease: A primer on-omic technologies. Am J Epidemiol 2016; 183(2):96-109; PMID:26721890
  • Sosnowski BA, Belote JM, McKeown M. Sex-specific alternative splicing of RNA from the transformer gene results from sequence-dependent splice site blockage. Cell 1989; 58(3):449-59; PMID:2503251; https://doi.org/10.1016/0092-8674(89)90426-1
  • Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res 2010; 20(2):180-9; PMID:20009012; https://doi.org/10.1101/gr.099226.109
  • Mertineit C, Yoder JA, Taketo T, Laird DW, Trasler JM, Bestor TH. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 1998; 125(5):889-97; PMID:9449671