949
Views
1
CrossRef citations to date
0
Altmetric
Meeting Report

Epigenetic mechanisms in health and disease: BCEC 2017

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 331-341 | Received 08 Jan 2018, Accepted 23 Jan 2018, Published online: 23 Feb 2018

References

  • Corujo D, Mas G, Malinverni R, et al. Barcelona conference on epigenetics and cancer 2015: Coding and non-coding functions of the genome. Epigenetics. 2016;11(1):95–100. doi:10.1080/15592294.2015.1131377. PubMed PMID: 26996885; PubMed Central PMCID: PMC4846135.
  • Dumbovic G, Biayna J, Font B, et al. Barcelona conference on epigenetics and cancer 2016 – beyond cancer genomes. Epigenetics. 2017 Mar 4;12(3):238–245. doi:10.1080/15592294.2017.1281503. PubMed PMID: 28121228; PubMed Central PMCID: PMC5406209.
  • Palau A, Perucho M, Esteller M, et al. First barcelona conference on epigenetics and Cancer. Epigenetics. 2014 Mar;9(3):468–475. doi:10.4161/epi.27759. PubMed PMID: 24413145; PubMed Central PMCID: PMC4053465.
  • Perez-Salvia M, Simo-Riudalbas L, Ausio J, et al. Barcelona conference on epigenetics and Cancer: 50 years of histone acetylation. Epigenetics. 2015;10(5):446–451. doi:10.1080/15592294.2015.1039222. PubMed PMID: 25942103; PubMed Central PMCID: PMC4622646.
  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep 6;489(7414):57–74. doi:10.1038/nature11247. PubMed PMID: 22955616; PubMed Central PMCID: PMC3439153.
  • Rowley MJ, Corces VG. The three-dimensional genome: principles and roles of long-distance interactions. Curr Opin Cell Biol. 2016 Jun;40:8–14. doi:10.1016/j.ceb.2016.01.009. PubMed PMID: 26852111; PubMed Central PMCID: PMC4887315.
  • Andrey G, Mundlos S. The three-dimensional genome: regulating gene expression during pluripotency and development. Development. 2017 Oct 15;144(20):3646–3658. doi:10.1242/dev.148304. PubMed PMID: 29042476.
  • Atlasi Y, Stunnenberg HG. The interplay of epigenetic marks during stem cell differentiation and development. Nat Rev Genet. 2017 Nov;18(11):643–658. doi:10.1038/nrg.2017.57. PubMed PMID: 28804139.
  • Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013 Oct;20(10):1147–1155. doi:10.1038/nsmb.2669. PubMed PMID: 24096405.
  • Shao Z, Raible F, Mollaaghababa R, et al. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell. 1999 Jul 9;98(1):37–46. doi:10.1016/S0092-8674(00)80604-2. PubMed PMID: 10412979.
  • Illingworth RS, Moffat M, Mann AR, et al. The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Gene Dev. 2015 Sep 15;29(18):1897–1902. doi:10.1101/gad.268151.115. PubMed PMID: 26385961; PubMed Central PMCID: PMC4579347.
  • Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci. 2010 Mar;11(3):176–187. doi:10.1038/nrn2761. PubMed PMID: 20107441..
  • Fueyo R, Garcia MA, Martinez-Balbas MA. Jumonji family histone demethylases in neural development. Cell Tissu Res. 2015 Jan;359(1):87–98. doi:10.1007/s00441-014-1924-7. PubMed PMID: 24950624.
  • Akizu N, Estaras C, Guerrero L, et al. H3K27me3 regulates BMP activity in developing spinal cord. Development. 2010 Sep 1;137(17):2915–2925. doi:10.1242/dev.049395. PubMed PMID: 20667911.
  • Estaras C, Akizu N, Garcia A, et al. Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program. Development. 2012;139(15):2681–2691. doi:10.1242/dev.078345. PubMed PMID: 22782721.
  • Merkenschlager M, Nora EP. CTCF and cohesin in genome folding and transcriptional gene regulation. Annu Rev Genomics Hum Genet. 2016 Aug 31;17:17–43. doi:10.1146/annurev-genom-083115-022339. PubMed PMID: 27089971.
  • Fiziev P, Akdemir KC, Miller JP, et al. Systematic Epigenomic analysis reveals chromatin states associated with melanoma progression. Cell Rep. 2017 Apr 25;19(4):875–889. doi:10.1016/j.celrep.2017.03.078. PubMed PMID: 28445736; PubMed Central PMCID: PMC5473172.
  • Ali T, Renkawitz R, Bartkuhn M. Insulators and domains of gene expression. Curr Opin Genet Dev. 2016 Apr;37:17–26. doi:10.1016/j.gde.2015.11.009. PubMed PMID: 26802288.
  • Ganss R, Montoliu L, Monaghan AP, et al. A cell-specific enhancer far upstream of the mouse tyrosinase gene confers high level and copy number-related expression in transgenic mice. The EMBO J. 1994 Jul 01;13(13):3083–3093. PubMed PMID: 8039502; PubMed Central PMCID: PMC395199.
  • Giraldo P, Montoliu L. Artificial chromosome transgenesis in pigmentary research. Pigm Cell Res. 2002 Aug;15(4):258–264. doi:10.1034/j.1600-0749.2002.02030.x. PubMed PMID: 12100491.
  • Montoliu L, Umland T, Schutz G. A locus control region at -12 kb of the tyrosinase gene. The EMBO J. 1996 Nov 15;15(22):6026–6034. PubMed PMID: 8947025; PubMed Central PMCID: PMC452424.
  • Seruggia D, Fernandez A, Cantero M, et al. Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res. 2015 May 26;43(10):4855–4867. doi:10.1093/nar/gkv375. PubMed PMID: 25897126; PubMed Central PMCID: PMC4446435.
  • MacAlpine DM, Almouzni G. Chromatin and DNA replication. Cold Spring Harbor Perspect Biol. 2013 Aug 1;5(8):a010207. doi:10.1101/cshperspect.a010207. PubMed PMID: 23751185; PubMed Central PMCID: PMC3721285.
  • Petruk S, Cai J, Sussman R, et al. Delayed accumulation of H3K27me3 on Nascent DNA Is essential for recruitment of transcription factors at early stages of stem cell differentiation. Mol Cell. 2017 Apr 20;66(2):247–257 e5. doi:10.1016/j.molcel.2017.03.006. PubMed PMID: 28410996; PubMed Central PMCID: PMC5412717.
  • Petruk S, Mariani SA, De Dominici M, et al. Structure of nascent chromatin is essential for hematopoietic lineage specification. Cell Rep. 2017 Apr 11;19(2):295–306. doi:10.1016/j.celrep.2017.03.035. PubMed PMID: 28402853; PubMed Central PMCID: PMC5408750.
  • Chen HC, Martinez JP, Zorita E, et al. Position effects influence HIV latency reversal. Nat Struct Mol Biol. 2017 Jan;24(1):47–54. doi:10.1038/nsmb.3328. PubMed PMID: 27870832.
  • Skene PJ, Henikoff S. Histone variants in pluripotency and disease. Development. 2013 Jun;140(12):2513–2524. doi:10.1242/dev.091439. PubMed PMID: 23715545.
  • Henikoff S, Smith MM. Histone variants and epigenetics. Cold Spring Harbor Perspect Biol. 2015 Jan 5;7(1):a019364. doi:10.1101/cshperspect.a019364. PubMed PMID: 25561719; PubMed Central PMCID: PMC4292162.
  • Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3. Cell Res. 2011 Mar;21(3):421–434. doi:10.1038/cr.2011.14. PubMed PMID: 21263457; PubMed Central PMCID: PMC3193428.
  • Bayona-Feliu A, Casas-Lamesa A, Reina O, et al. Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nat Commun. 2017 Aug 18;8(1):283. doi:10.1038/s41467-017-00338-5. PubMed PMID: 28819201; PubMed Central PMCID: PMC5561251.
  • Izquierdo-Bouldstridge A, Bustillos A, Bonet-Costa C, et al. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res. 2017 Nov 16;45(20):11622–11642. doi:10.1093/nar/gkx746. PubMed PMID: 28977426.
  • Millan-Arino L, Islam AB, Izquierdo-Bouldstridge A, et al. Mapping of six somatic linker histone H1 variants in human breast cancer cells uncovers specific features of H1.2. Nucleic Acids Res. 2014 Apr;42(7):4474–4493. doi:10.1093/nar/gku079. PubMed PMID: 24476918; PubMed Central PMCID: PMC3985652.
  • Millan-Arino L, Izquierdo-Bouldstridge A, Jordan A. Specificities and genomic distribution of somatic mammalian histone H1 subtypes. Biochimica et biophysica acta. 2016 Mar;1859(3):510–519. doi:10.1016/j.bbagrm.2015.10.013. PubMed PMID: 26477490.
  • Perez-Montero S, Carbonell A, Azorin F. Germline-specific H1 variants: the “sexy” linker histones. Chromosoma. 2016 Mar;125(1):1–13. doi:10.1007/s00412-015-0517-x. PubMed PMID: 25921218.
  • Perez-Montero S, Carbonell A, Moran T, et al. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell. 2013 Sep 30;26(6):578–590. doi:10.1016/j.devcel.2013.08.011. PubMed PMID: 24055651.
  • Sancho M, Diani E, Beato M, et al. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet. 2008 Oct;4(10):e1000227. doi:10.1371/journal.pgen.1000227. PubMed PMID: 18927631; PubMed Central PMCID: PMC2563032.
  • Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harbor Perspect Biol. 2014 May 1;6(5):a019133. doi:10.1101/cshperspect.a019133. PubMed PMID: 24789823; PubMed Central PMCID: PMC3996472.
  • Manzo M, Wirz J, Ambrosi C, et al. Isoform-specific localization of DNMT3A regulates DNA methylation fidelity at bivalent CpG islands. The EMBO J. 2017 Dec 1;36(23):3421–3434. doi:10.15252/embj.201797038. PubMed PMID: 29074627; PubMed Central PMCID: PMC5709737.
  • Nagano T, Lubling Y, Varnai C, et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature. 2017 Jul 5;547(7661):61–67. doi:10.1038/nature23001. PubMed PMID: 28682332; PubMed Central PMCID: PMC5567812.
  • Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009 Mar;10(3):155–159. doi:10.1038/nrg2521. PubMed PMID: 19188922.
  • Mondal T, Subhash S, Vaid R, et al. MEG3 long noncoding RNA regulates the TGF-beta pathway genes through formation of RNA-DNA triplex structures. Nat Commun. 2015 Jul 24;6:7743. doi:10.1038/ncomms8743. PubMed PMID: 26205790; PubMed Central PMCID: PMC4525211.
  • Postepska-Igielska A, Giwojna A, Gasri-Plotnitsky L, et al. LncRNA Khps1 regulates expression of the proto-oncogene SPHK1 via Triplex-mediated changes in chromatin structure. Mol Cell. 2015 Nov 19;60(4):626–636. doi:10.1016/j.molcel.2015.10.001. PubMed PMID: 26590717.
  • O'Leary VB, Ovsepian SV, Carrascosa LG, et al. PARTICLE, a Triplex-forming long ncRNA, Regulates locus-specific methylation in response to low-dose irradiation. Cell Rep. 2015 Apr 21;11(3):474–485. doi:10.1016/j.celrep.2015.03.043. PubMed PMID: 25900080.
  • Buscaino A, Allshire R, Pidoux A. Building centromeres: home sweet home or a nomadic existence? Curr Opin Genet Dev. 2010 Apr;20(2):118–126. doi:10.1016/j.gde.2010.01.006. PubMed PMID: 20206496.
  • Catania S, Pidoux AL, Allshire RC. Sequence features and transcriptional stalling within centromere DNA promote establishment of CENP-A chromatin. PLoS Genet. 2015 Mar;11(3):e1004986. doi:10.1371/journal.pgen.1004986. PubMed PMID: 25738810; PubMed Central PMCID: PMC4349457.
  • Folco HD, Pidoux AL, Urano T, et al. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science. 2008 Jan 04;319(5859):94–97. doi:10.1126/science.1150944. PubMed PMID: 18174443; PubMed Central PMCID: PMC2586718.
  • Kagansky A, Folco HD, Almeida R, et al. Synthetic heterochromatin bypasses RNAi and centromeric repeats to establish functional centromeres. Science. 2009 Jun 26;324(5935):1716–1719. doi:10.1126/science.1172026. PubMed PMID: 19556509; PubMed Central PMCID: PMC2949999.
  • Luk E, Ranjan A, Fitzgerald PC, et al. Stepwise histone replacement by SWR1 requires dual activation with histone H2A.Z and canonical nucleosome. Cell. 2010 Nov 24;143(5):725–736. doi:10.1016/j.cell.2010.10.019. PubMed PMID: 21111233.
  • Ranjan A, Mizuguchi G, FitzGerald PC, et al. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell. 2013 Sep 12;154(6):1232–1245. doi:10.1016/j.cell.2013.08.005. PubMed PMID: 24034247; PubMed Central PMCID: PMC3815578.
  • Liang X, Shan S, Pan L, et al. Structural basis of H2A.Z recognition by SRCAP chromatin-remodeling subunit YL1. Nat Struct Mol Biol. 2016 Apr;23(4):317–323. doi:10.1038/nsmb.3190. PubMed PMID: 26974124.
  • Ranjan A, Wang F, Mizuguchi G, et al. H2A histone-fold and DNA elements in nucleosome activate SWR1-mediated H2A.Z replacement in budding yeast. eLife. 2015 Jun 27;4:e06845. doi:10.7554/eLife.06845. PubMed PMID: 26116819; PubMed Central PMCID: PMC4508883.
  • Buschbeck M, Hake SB. Variants of core histones and their roles in cell fate decisions, development and cancer. Nat Rev Mol Cell Biol. 2017 May;18(5):299–314. doi:10.1038/nrm.2016.166. PubMed PMID: 28144029.
  • Schlesinger S, Kaffe B, Melcer S, et al. A hyperdynamic H3.3 nucleosome marks promoter regions in pluripotent embryonic stem cells. Nucleic Acids Res. 2017 Dec 1;45(21):12181–12194. doi:10.1093/nar/gkx817. PubMed PMID: 29036702; PubMed Central PMCID: PMC5716099.
  • Torres CM, Biran A, Burney MJ, et al. The linker histone H1.0 generates epigenetic and functional intratumor heterogeneity. Science. 2016 Sep 30;353(6307). pii: aaf1644. doi:10.1126/science.aaf1644. PubMed PMID: 27708074; PubMed Central PMCID: PMC5131846.
  • Carbonell A, Pérez-Montero S, Climent-Cantó P, et al. The Germline linker histone dBigH1 and the translational regulator bam form a repressor loop essential for male germ stem cell differentiation. Cell Rep. 2017;21(11):3178–3189. doi:10.1016/j.celrep.2017.11.060. PubMed PMID: 29241545.
  • Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008 Mar;9(3):204–217. doi:10.1038/nrg2268. PubMed PMID: 18227811.
  • Vijg J, Suh Y. Genome instability and aging. Annu Rev Physiol. 2013;75:645–668. doi:10.1146/annurev-physiol-030212-183715. PubMed PMID: 23398157.
  • Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability–an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010 Mar;11(3):220–228. doi:10.1038/nrm2858. PubMed PMID: 20177397.
  • Nair N, Shoaib M, Sorensen CS. Chromatin dynamics in genome stability: Roles in suppressing endogenous DNA Damage and facilitating DNA repair. Int J Mol Sci. 2017 Jul 10;18(7). pii: E1486. doi:10.3390/ijms18071486. PubMed PMID: 28698521; PubMed Central PMCID: PMC5535976.
  • Padeken J, Zeller P, Gasser SM. Repeat DNA in genome organization and stability. Curr Opin Genet Dev. 2015 Apr;31:12–19. doi:10.1016/j.gde.2015.03.009. PubMed PMID: 25917896.
  • Carone DM, Lawrence JB. Heterochromatin instability in cancer: from the Barr body to satellites and the nuclear periphery. Semin Cancer Biol. 2013 Apr;23(2):99–108. doi:10.1016/j.semcancer.2012.06.008. PubMed PMID: 22722067; PubMed Central PMCID: PMC3500402.
  • Zeller P, Padeken J, van Schendel R, et al. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nature Genet. 2016 Nov;48(11):1385–1395. doi:10.1038/ng.3672. PubMed PMID: 27668659.
  • Pan MR, Hsieh HJ, Dai H, et al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment. J Biol Chem. 2012 Feb 24;287(9):6764–6772. doi:10.1074/jbc.M111.287037. PubMed PMID: 22219182; PubMed Central PMCID: PMC3307306.
  • Gong F, Chiu LY, Cox B, et al. Screen identifies bromodomain protein ZMYND8 in chromatin recognition of transcription-associated DNA damage that promotes homologous recombination. Genes Dev. 2015 Jan 15;29(2):197–211. doi:10.1101/gad.252189.114. PubMed PMID: 25593309; PubMed Central PMCID: PMC4298138.
  • Gong F, Clouaire T, Aguirrebengoa M, et al. Histone demethylase KDM5A regulates the ZMYND8-NuRD chromatin remodeler to promote DNA repair. J Cell Biol. 2017 Jul 03;216(7):1959–1974. doi:10.1083/jcb.201611135. PubMed PMID: 28572115; PubMed Central PMCID: PMC5496618.
  • Esteller M. Epigenetics in cancer. New England J Med. 2008 Mar 13;358(11):1148–1159. doi:10.1056/NEJMra072067. PubMed PMID: 18337604.
  • Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from Pneumococcus type III. Oswald Theodore Avery (1877-1955). Clin Orthop Relat Res. 2000 Oct;(379 Suppl):S3–S8. PubMed PMID: 11039746.
  • Baylin SB, Ohm JE. Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006 Feb;6(2):107–116. doi:10.1038/nrc1799. PubMed PMID: 16491070.
  • Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009 Dec;1(2):239–259. doi:10.2217/epi.09.33. PubMed PMID: 20495664; PubMed Central PMCID: PMC2873040.
  • Beguelin W, Popovic R, Teater M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell. 2013 May 13;23(5):677–692. doi:10.1016/j.ccr.2013.04.011. PubMed PMID: 23680150; PubMed Central PMCID: PMC3681809.
  • Beguelin W, Teater M, Gearhart MD, et al. EZH2 and BCL6 Cooperate to Assemble CBX8-BCOR complex to repress bivalent promoters, mediate germinal center formation and lymphomagenesis. Cancer Cell. 2016 Aug 8;30(2):197–213. doi:10.1016/j.ccell.2016.07.006. PubMed PMID: 27505670; PubMed Central PMCID: PMC5000552.
  • Beguelin W, Rivas MA, Calvo Fernandez MT, et al. EZH2 enables germinal centre formation through epigenetic silencing of CDKN1A and an Rb-E2F1 feedback loop. Nat Commun. 2017 Oct 12;8(1):877. doi:10.1038/s41467-017-01029-x. PubMed PMID: 29026085; PubMed Central PMCID: PMC5638898.
  • Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 2005 Mar;15(3):146–155. doi:10.1016/j.tcb.2005.01.007. PubMed PMID: 15752978.
  • Schnoder TM, Arreba-Tutusaus P, Griehl I, et al. Epo-induced erythroid maturation is dependent on Plcgamma1 signaling. Cell Death Differ. 2015 Jun;22(6):974–985. doi:10.1038/cdd.2014.186. PubMed PMID: 25394487; PubMed Central PMCID: PMC4423181.
  • Bheda P, Schneider R. Epigenetics reloaded: the single-cell revolution. Trends Cell Biol. 2014 Nov;24(11):712–723. doi:10.1016/j.tcb.2014.08.010. PubMed PMID: 25283892.
  • Magnani L, Frige G, Gadaleta RM, et al. Acquired CYP19A1 amplification is an early specific mechanism of aromatase inhibitor resistance in ERalpha metastatic breast cancer. Nat Genet. 2017 Mar;49(3):444–450. doi:10.1038/ng.3773. PubMed PMID: 28112739; PubMed Central PMCID: PMC5326683.
  • Moran S, Martinez-Cardus A, Sayols S, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 2016 Oct;17(10):1386–1395. doi:10.1016/S1470-2045(16)30297-2. PubMed PMID: 27575023.
  • Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011 Mar;17(3):330–339. doi:10.1038/nm.2305. PubMed PMID: 21386836.
  • Perez-Salvia M, Simo-Riudalbas L, Llinas-Arias P, et al. Bromodomain inhibition shows antitumoral activity in mice and human luminal breast cancer. Oncotarget. 2017 Aug 1;8(31):51621–51629. doi:10.18632/oncotarget.18255. PubMed PMID: 28881673; PubMed Central PMCID: PMC5584274.
  • Iorio F, Knijnenburg TA, Vis DJ, et al. A Landscape of pharmacogenomic interactions in Cancer. Cell. 2016 Jul 28;166(3):740–754. doi:10.1016/j.cell.2016.06.017. PubMed PMID: 27397505; PubMed Central PMCID: PMC4967469.
  • Llinas-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update. Open Biol. 2017 Sep;7(9). pii: 170152. doi:10.1098/rsob.170152. PubMed PMID: 28931650; PubMed Central PMCID: PMC5627056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.