2,474
Views
17
CrossRef citations to date
0
Altmetric
RESEARCH ARTICLE

Experience-dependent neuroplasticity of the developing hypothalamus: integrative epigenomic approaches

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 318-330 | Received 10 Dec 2017, Accepted 07 Mar 2018, Published online: 10 May 2018

References

  • Levine S. Infantile experience and resistance to physiological stress. Science. 1957;126:405. doi:10.1126/science.126.3270.405. PMID:13467220
  • Francis D, Diorio J, Liu D, et al. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286:1155–8. doi:10.1126/science.286.5442.1155. PMID:10550053
  • Barnett SA, Burn J. Early stimulation and maternal behaviour. Nature. 1967;213:150–2. doi:10.1038/213150a0. PMID:6030570
  • Meaney M, Aitken D, van Berkel C, et al. Effect of neonatal handling on age-related impairments associated with the hippocampus. Science. 1988;239:766–8. doi:10.1126/science.3340858. PMID:3340858
  • Avishai-Eliner S, Eghbal-Ahmadi M, Tabachnik E, et al. Down-regulation of hypothalamic corticotropin-releasing hormone messenger ribonucleic acid (mRNA) precedes early-life experience-induced changes in hippocampal glucocorticoid receptor mRNA. Endocrinology. 2001;142:89–97. doi:10.1210/endo.142.1.7917. PMID:11145570
  • Fenoglio KA, Chen Y, Baram TZ. Neuroplasticity of the hypothalamic-pituitary-adrenal axis early in life requires recurrent recruitment of stress-regulating brain regions. J Neurosci. 2006;26:2434–42. doi:10.1523/JNEUROSCI.4080-05.2006. PMID:16510721
  • Meaney MJ, Viau V, Bhatnagar S, et al. Cellular mechanisms underlying the development and expression of individual differences in the hypothalamic-pituitary-adrenal stress response. J Steroid Biochem Mol Biol. 1991;39:265–74. doi:10.1016/0960-0760(91)90072-D. PMID:1888687
  • Caldji C, Tannenbaum B, Sharma S, et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proc Natl Acad Sci U S A. 1998;95:5335–40. doi:10.1073/pnas.95.9.5335. PMID:9560276
  • Liu D, Diorio J, Tannenbaum B, et al. Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 1997;277:1659–62. doi:10.1126/science.277.5332.1659. PMID:9287218
  • Viau V, Sharma S, Plotsky P, et al. Increased plasma ACTH responses to stress in nonhandled compared with handled rats require basal levels of corticosterone and are associated with increased levels of ACTH secretagogues in the median eminence. J Neurosci. 1993;13:1097–105. doi:10.1523/JNEUROSCI.13-03-01097.1993. PMID:8382733
  • Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res. 1993;18:195–200. doi:10.1016/0169-328X(93)90189-V. PMID:8497182
  • Singh-Taylor A, Molet J, Jiang S, et al. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience. Mol Psychiatry. 2018;23:648–57.
  • Fenoglio KA, Brunson KL, Avishai-Eliner S, et al. Enduring, handling-evoked enhancement of hippocampal memory function and glucocorticoid receptor expression involves activation of the corticotropin-releasing factor type 1 receptor. Endocrinology. 2005;146:4090–6. doi:10.1210/en.2004-1285. PMID:15932935
  • Korosi A, Baram TZ. The pathways from mother's love to baby's future. Front Behav Neurosci. 2009;3:27. doi:10.3389/neuro.08.027.2009. PMID:19826614
  • Meaney MJ, Aitken DH. The effects of early postnatal handling on hippocampal glucocorticoid receptor concentrations: Temporal parameters. Dev Brain Res. 1985;22:301–4. doi:10.1016/0165-3806(85)90183-X.
  • Korosi A, Shanabrough M, McClelland S, et al. Early-life experience reduces excitation to stress-responsive hypothalamic neurons and reprograms the expression of corticotropin-releasing hormone. J Neurosci. 2010;30:703–13. doi:10.1523/JNEUROSCI.4214-09.2010. PMID:20071535
  • Singh-Taylor A, Korosi A, Molet J, et al. Synaptic rewiring of stress-sensitive neurons by early-life experience: A mechanism for resilience? Neurobiol Stress. 2015;1:109–15. doi:10.1016/j.ynstr.2014.10.007. PMID:25530985
  • Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54. doi:10.1038/nn1276. PMID:15220929
  • Weaver ICG, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are reversible in adulthood. Proc Natl Acad Sci U S A. 2006;103:3480–5. doi:10.1073/pnas.0507526103. PMID:16484373
  • McGowan PO, Suderman M, Sasaki A, et al. Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One. 2011;6:e14739. doi:10.1371/journal.pone.0014739. PMID:21386994
  • McClelland S, Korosi A, Cope J, et al. Emerging roles of epigenetic mechanisms in the enduring effects of early-life stress and experience on learning and memory. Neurobiol Learn Mem. 2011;96:79–88. doi:10.1016/j.nlm.2011.02.008. PMID:21338703
  • Schroeder DI, Lott P, Korf I, et al. Large-scale methylation domains mark a functional subset of neuronally expressed genes. Genome Res. 2011;21:1583–91. doi:10.1101/gr.119131.110. PMID:21784875
  • Dunaway KW, Islam MS, Coulson RL, et al. Cumulative impact of polychlorinated biphenyl and large chromosomal duplications on DNA methylation, chromatin, and expression of autism candidate genes. Cell Rep. 2016;17:3035–48. doi:10.1016/j.celrep.2016.11.058. PMID:27974215
  • Lister R, Mukamel EA, Nery JR, et al. Global epigenomic reconfiguration during mammalian brain development. Science. 2013;341:1237905. doi:10.1126/science.1237905. PMID:23828890
  • Geraldo S, Khanzada UK, Parsons M, et al. Targeting of the F-actin-binding protein drebrin by the microtubule plus-tip protein EB3 is required for neuritogenesis. Nat Cell Biol. 2008;10:1181–9. doi:10.1038/ncb1778. PMID:18806788
  • Murata Y, Doi T, Taniguchi H, et al. Proteomic analysis revealed a novel synaptic proline-rich membrane protein (PRR7) associated with PSD-95 and NMDA receptor. Biochem Biophys Res Commun. 2005;327:183–91. doi:10.1016/j.bbrc.2004.11.154. PMID:15629447
  • Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell. 1999;96:857–68. doi:10.1016/S0092-8674(00)80595-4. PMID:10102273
  • Houge G, Rasmussen IH, Hovland R. Loss-of-function CNKSR2 mutation is a likely cause of non-syndromic X-linked intellectual disability. Mol Syndromol. 2012;2:60–3. doi:10.1159/000335159. PMID:22511892
  • Lee SR, Ramos SM, Ko A, et al. AR and ER interaction with a p21-activated kinase (PAK6). Mol Endocrinol. 2002;16:85–99. doi:10.1210/mend.16.1.0753. PMID:11773441
  • Hansen KD, Langmead B, Irizarry RA. BSmooth: From whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13:R83. doi:10.1186/gb-2012-13-10-r83. PMID:23034175
  • Ong C-T, Corces VG. CTCF: An architectural protein bridging genome topology and function. Nat Publ Gr. 2014;15:234–46.
  • Antinucci P, Nikolaou N, Meyer MP, et al. Teneurin-3 specifies morphological and functional connectivity of retinal ganglion cells in the vertebrate visual system. Cell Rep. 2013;5:582–92. doi:10.1016/j.celrep.2013.09.045. PMID:24183672
  • Ma H, Ng HM, Teh X, et al. Zfp322a regulates mouse ES cell pluripotency and enhances reprogramming efficiency. PLoS Genet. 2014;10:e1004038. doi:10.1371/journal.pgen.1004038. PMID:24550733
  • Nyman E, Rajan MR, Fagerholm S, Brännmark C, Cedersund G, Strålfors P. A single mechanism can explain network-wide insulin resistance in adipocytes from obese patients with type 2 diabetes. J Biol Chem. 2014;289:33215–33230.
  • Besnard A, Galan-Rodriguez B, Vanhoutte P, et al. Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci. 2011;5:35. doi:10.3389/fnins.2011.00035. PMID:21441990
  • Valluy J, Bicker S, Aksoy-Aksel A, et al. A coding-independent function of an alternative Ube3a transcript during neuronal development. Nat Neurosci. 2015;18:666–73. doi:10.1038/nn.3996. PMID:25867122
  • Han J, Lee Y, Yeom K-H, et al. Molecular basis for the recognition of primary microRNAs by the drosha-DGCR8 complex. Cell. 2006;125:887–901. doi:10.1016/j.cell.2006.03.043. PMID:16751099
  • Pritchard LE, Turnbull AV, White A. REVIEW Pro-opiomelanocortin processing in the hypothalamus: Impact on melanocortin signalling and obesity. J Endocrinol. 2002;172:411–21. doi:10.1677/joe.0.1720411. PMID:11874690
  • Khoshbouei H, Cecchi M, Dove S, et al. Behavioral reactivity to stress: Amplification of stress-induced noradrenergic activation elicits a galanin-mediated anxiolytic effect in central amygdala. Pharmacol Biochem Behav. 2002;71:407–17. doi:10.1016/S0091-3057(01)00683-9. PMID:11830175
  • Hu W, Zhang M, Czéh B, et al. Stress impairs GABAergic network function in the hippocampus by activating nongenomic glucocorticoid receptors and affecting the integrity of the parvalbumin-expressing neuronal network. Neuropsychopharmacology. 2010;35:1693–707. doi:10.1038/npp.2010.31. PMID:20357756
  • Lammich S, Kojro E, Postina R, et al. Constitutive and regulated alpha-secretase cleavage of Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A. 1999;96:3922–7. doi:10.1073/pnas.96.7.3922. PMID:10097139
  • Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82:477–88. doi:10.1016/j.ajhg.2007.12.009. PMID:18252227
  • Murgatroyd C, Spengler D. Epigenetic programming of the HPA axis: Early life decides. Stress. 2011;14:581–9. doi:10.3109/10253890.2011.602146. PMID:21854166
  • Pappa I, St Pourcain B, Benke K, et al. A genome-wide approach to children's aggressive behavior: The EAGLE consortium. Am J Med Genet Part B Neuropsychiatr Genet. 2016;171:562–72. doi:10.1002/ajmg.b.32333.
  • Ju M, Wray D. Molecular identification and characterisation of the human eag2 potassium channel. FEBS Lett. 2002;524:204–10. doi:10.1016/S0014-5793(02)03055-7. PMID:12135768
  • Satijn DP, Gunster MJ, van der Vlag J, et al. RING1 is associated with the polycomb group protein complex and acts as a transcriptional repressor. Mol Cell Biol. 1997;17:4105–13. doi:10.1128/MCB.17.7.4105. PMID:9199346
  • Lupien SJ, King S, Meaney MJ, et al. Child's stress hormone levels correlate with mother's socioeconomic status and depressive state. Biol Psychiatry. 2000;48:976–80. doi:10.1016/S0006-3223(00)00965-3. PMID:11082471
  • Baram TZ, Davis EP, Obenaus A, et al. Fragmentation and unpredictability of early-life experience in mental disorders. Am J Psychiatry. 2012;169:907–15. doi:10.1176/appi.ajp.2012.11091347. PMID:22885631
  • Gunnar MR, Frenn K, Wewerka SS. Van Ryzin MJ. Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology. 2009;34:62–75. doi:10.1016/j.psyneuen.2008.08.013. PMID:18835102
  • Halligan SL, Herbert J, Goodyer I, et al. Disturbances in morning cortisol secretion in association with maternal postnatal depression predict subsequent depressive symptomatology in adolescents. Biol Psychiatry. 2007;62:40–6. doi:10.1016/j.biopsych.2006.09.011. PMID:17188253
  • Wilson RS, Schneider JA, Boyle PA, et al. Chronic distress and incidence of mild cognitive impairment. Neurology. 2007;68:2085–92. doi:10.1212/01.wnl.0000264930.97061.82. PMID:17562829
  • Gourion D, Arseneault L, Vitaro F, et al. Early environment and major depression in young adults: A longitudinal study. Psychiatry Res. 2008;161:170–6. doi:10.1016/j.psychres.2007.07.026. PMID:18849082
  • Kishida KT, Klann E. Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal. 2006;0:61121054212009. doi:10.1089/ars.2007.9.ft-8.
  • Ostrakhovitch EA, Semenikhin OA. The role of redox environment in neurogenic development. Arch Biochem Biophys. 2013;534:44–54. doi:10.1016/j.abb.2012.08.002. PMID:22910298
  • Yu Y, Yoon S-O, Poulogiannis G, et al. Phosphoproteomic Analysis Identifies Grb10 as an mTORC1 Substrate That Negatively Regulates Insulin Signaling. Science. 2011;332:1322–6. doi:10.1126/science.1199484. PMID:21659605
  • Santini E, Huynh TN, Klann E. Mechanisms of translation control underlying long-lasting synaptic plasticity and the consolidation of long-term memory. Progr Mol Biol Transl Sci. 2014;122:131–67.
  • Charney DS, Manji HK. Life stress, genes, and depression: Multiple pathways lead to increased risk and new opportunities for intervention. Sci Signal. 2004;2004:re5. doi:10.1126/stke.2252004re5.
  • Henckens MJ, Deussing JM, Chen A. Region-specific roles of the corticotropin-releasing factor–urocortin system in stress. Nat Rev Neurosci. 2016;17:636–51.
  • Suderman M, McGowan PO, Sasaki A, et al. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus. Proc Natl Acad Sci U S A. 2012;109:17266–72. doi:10.1073/pnas.1121260109. PMID:23045659
  • consortium TB. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotech. 2016;34:726–37. doi:10.1038/nbt.3605.
  • Francis DD, Diorio J, Plotsky PM, et al. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci. 2002;22:7840–3. PMID:12223535
  • Champagne FA, Francis DD, Mar A, et al. Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol Behav. 2003;79:359–71. doi:10.1016/S0031-9384(03)00149-5. PMID:12954431
  • Weaver ICG, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. J Neurosci. 2005;25:11045–54. doi:10.1523/JNEUROSCI.3652-05.2005. PMID:16306417
  • Laufer BI, Singh SM. Strategies for precision modulation of gene expression by epigenome editing: An overview. Epigenet Chromatin. 2015;8:34. doi:10.1186/s13072-015-0023-7. PMID:26388942
  • Stelzer Y, Wu H, Song Y, et al. Parent-of-origin DNA methylation dynamics during mouse development. Cell Rep. 2016;16:3167–80. doi:10.1016/j.celrep.2016.08.066. PMID:27653683
  • Morita S, Noguchi H, Horii T, et al. Targeted DNA demethylation in vivo using dCas9–peptide repeat and scFv–TET1 catalytic domain fusions. Nat Biotechnol. 2016;34:1060–5. doi:10.1038/nbt.3658. PMID:27571369
  • Stepper P, Kungulovski G, Jurkowska RZ, et al. Efficient targeted DNA methylation with chimeric dCas9–Dnmt3a–Dnmt3L methyltransferase. Nucleic Acids Res. 2017;45:1703–13. doi:10.1093/nar/gkw1112. PMID:27899645

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.