1,425
Views
15
CrossRef citations to date
0
Altmetric
Research Paper

Chromium disrupts chromatin organization and CTCF access to its cognate sites in promoters of differentially expressed genes

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 363-375 | Received 15 Dec 2017, Accepted 13 Mar 2018, Published online: 03 May 2018

References

  • Kondo K, Takahashi Y, Hirose Y, et al. The reduced expression and aberrant methylation of p16(INK4a) in chromate workers with lung cancer. Lung Cancer. 2006;53:295–302. doi:10.1016/j.lungcan.2006.05.022. PMID:16828922
  • Park RM, Bena JF, Stayner LT, et al. Hexavalent chromium and lung cancer in the chromate industry: a quantitative risk assessment. Risk Anal. 2004;24:1099–1108. doi:10.1111/j.0272-4332.2004.00512.x. PMID:15563281
  • Wilbur S, Abadin H, Fay M, et al. Toxicological profile for chromium. Atlanta (GA): ATSDR, CDC; 2012.
  • Costa M, Klein CB. Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol. 2006;36:155–163. doi:10.1080/10408440500534032. PMID:16736941
  • National Toxicology P. Toxicology and carcinogenesis studies of sodium dichromate dihydrate (Cas No. 7789-12-0) in F344/N rats and B6C3F1 mice (drinking water studies). Natl Toxicol Program Tech Rep Ser. 2008:1–192.
  • IARC. Arsenic, metals, fibres, and dusts. IARC Monogr Eval Carcinog Risks Hum. 2012;100:11–465. PMID:23189751
  • Sanchez-Martin FJ, Fan Y, Carreira V, et al.. Long-term Coexposure to Hexavalent Chromium and B[a]P Causes Tissue-Specific Differential Biological Effects in Liver and Gastrointestinal Tract of Mice. Toxicol Sci. 2015;146:52–64.
  • Thompson CM, Seiter J, Chappell MA, et al. Synchrotron-based imaging of chromium and gamma-H2AX immunostaining in the duodenum following repeated exposure to Cr(VI) in drinking water. Toxicol Sci. 2015;143:16–25. doi:10.1093/toxsci/kfu206. PMID:25352572
  • Thompson CM, Wolf JC, Elbekai RH, et al. Duodenal crypt health following exposure to Cr(VI): Micronucleus scoring, gamma-H2AX immunostaining, and synchrotron X-ray fluorescence microscopy. Mutat Res Genet Toxicol Environ Mutagen. 2015;789–790:61–66. doi:10.1016/j.mrgentox.2015.05.004. PMID:26232259
  • Sun H, Brocato J, Costa M. Oral Chromium Exposure and Toxicity. Curr Environ Health Rep. 2015;2:295–303. doi:10.1007/s40572-015-0054-z. PMID:26231506
  • IARC. Chromium, nickel and welding. IARC Monogr Eval Carcinog Risks Hum. 1990;49:1–648. PMID:2232124
  • Hamilton JW, Wetterhahn KE. Differential effects of chromium(VI) on constitutive and inducible gene expression in chick embryo liver in vivo and correlation with chromium(VI)-induced DNA damage. Mol Carcinog. 1989;2:274–286. doi:10.1002/mc.2940020508. PMID:2604865
  • De Flora S, Badolati GS, Serra D, et al. Circadian reduction of chromium in the gastric environment. Mutat Res. 1987;192:169–174. doi:10.1016/0165-7992(87)90051-0. PMID:3683437
  • Petrilli FL, Rossi GA, Camoirano A, et al. Metabolic reduction of chromium by alveolar macrophages and its relationships to cigarette smoke. J Clin Invest. 1986;77:1917–1924. doi:10.1172/JCI112520. PMID:2423559
  • Zhitkovich A, Quievryn G, Messer J, et al. Reductive activation with cysteine represents a chromium(III)-dependent pathway in the induction of genotoxicity by carcinogenic chromium(VI). Environ Health Perspect. 2002;110 Suppl 5:729–731. doi:10.1289/ehp.02110s5729. PMID:12426121
  • Zhitkovich A. Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium(VI). Chem Res Toxicol. 2005;18:3–11. doi:10.1021/tx049774+. PMID:15651842
  • Ha L, Ceryak S, Patierno SR. Chromium (VI) activates ataxia telangiectasia mutated (ATM) protein. Requirement of ATM for both apoptosis and recovery from terminal growth arrest. J Biol Chem. 2003;278:17885–17894. doi:10.1074/jbc.M210560200. PMID:12637545
  • Ha L, Ceryak S, Patierno SR. Generation of S phase-dependent DNA double-strand breaks by Cr(VI) exposure: involvement of ATM in Cr(VI) induction of gamma-H2AX. Carcinogenesis. 2004;25:2265–2274. doi:10.1093/carcin/bgh242. PMID:15284180
  • Holmes AL, Wise SS, Pelsue SC, et al. Chronic exposure to zinc chromate induces centrosome amplification and spindle assembly checkpoint bypass in human lung fibroblasts. Chem Res Toxicol. 2010;23:386–395. doi:10.1021/tx900360w. PMID:20030412
  • Qin Q, Xie H, Wise SS, et al. Homologous recombination repair signaling in chemical carcinogenesis: prolonged particulate hexavalent chromium exposure suppresses the Rad51 response in human lung cells. Toxicol Sci. 2014;142:117–125. doi:10.1093/toxsci/kfu175. PMID:25173789
  • Wise SS, Holmes AL, Wise JP, Sr. Hexavalent chromium-induced DNA damage and repair mechanisms. Rev Environ Health. 2008;23:39–57. doi:10.1515/REVEH.2008.23.1.39. PMID:18557597
  • Xie H, Holmes AL, Young JL, et al. Zinc chromate induces chromosome instability and DNA double strand breaks in human lung cells. Toxicol Appl Pharmacol. 2009;234:293–299. doi:10.1016/j.taap.2008.10.010. PMID:19027772
  • Ovesen JL, Fan Y, Chen J, et al. Long-term exposure to low-concentrations of Cr(VI) induce DNA damage and disrupt the transcriptional response to benzo[a]pyrene. Toxicology. 2014;316:14–24. doi:10.1016/j.tox.2013.12.001. PMID:24374135
  • Xu J, Manning FC, O'Brien TJ, et al. Mechanisms of chromium-induced suppression of RNA synthesis in cellular and cell-free systems: relationship to RNA polymerase arrest. Mol Cell Biochem. 2004;255:151–160. doi:10.1023/B:MCBI.0000007271.53241.ae. PMID:14971656
  • Zhitkovich A. Chromium in drinking water: sources, metabolism, and cancer risks. Chem Res Toxicol. 2011;24:1617–1629. doi:10.1021/tx200251t. PMID:21766833
  • Chen L, Ovesen JL, Puga A, et al. Distinct contributions of JNK and p38 to chromium cytotoxicity and inhibition of murine embryonic stem cell differentiation. Environ Health Perspect. 2009;117:1124–1130. doi:10.1289/ehp.0800157. PMID:19654923
  • Kim G, Yurkow EJ. Chromium induces a persistent activation of mitogen-activated protein kinases by a redox-sensitive mechanism in H4 rat hepatoma cells. Cancer Res. 1996;56:2045–2051. PMID:8616849
  • Chen F, Ye J, Zhang X, et al. One-electron reduction of chromium(VI) by alpha-lipoic acid and related hydroxyl radical generation, dG hydroxylation and nuclear transcription factor-kappaB activation. Arch Biochem Biophys. 1997;338:165–172. doi:10.1006/abbi.1996.9849. PMID:9028868
  • Ye J, Zhang X, Young HA, et al. Chromium(VI)-induced nuclear factor-kappa B activation in intact cells via free radical reactions. Carcinogenesis. 1995;16:2401–2405. doi:10.1093/carcin/16.10.2401. PMID:7586142
  • Schnekenburger M, Peng L, Puga A. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. Biochim Biophys Acta. 2007;1769:569–578. doi:10.1016/j.bbaexp.2007.07.002. PMID:17707923
  • Schnekenburger M, Talaska G, Puga A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol. 2007;27:7089–7101. doi:10.1128/MCB.00838-07. PMID:17682057
  • Wei YD, Tepperman K, Huang MY, et al. Chromium inhibits transcription from polycyclic aromatic hydrocarbon-inducible promoters by blocking the release of histone deacetylase and preventing the binding of p300 to chromatin. J Biol Chem. 2004;279:4110–4119. doi:10.1074/jbc.M310800200. PMID:14625279
  • Ovesen JL, Fan Y, Zhang X, et al. Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE) analysis uncovers broad changes in chromatin structure resulting from hexavalent chromium exposure. PLoS One. 2014;9:e97849. doi:10.1371/journal.pone.0097849. PMID:24837440
  • Chen K, Xi Y, Pan X, et al. DANPOS: dynamic analysis of nucleosome position and occupancy by sequencing. Genome Res. 2013;23:341–351. doi:10.1101/gr.142067.112. PMID:23193179
  • Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–589. doi:10.1016/j.molcel.2010.05.004. PMID:20513432
  • de Wit E, Vos ES, Holwerda SJ, et al. CTCF binding polarity determines chromatin looping. Mol Cell. 2015;60:676–684. doi:10.1016/j.molcel.2015.09.023. PMID:26527277
  • Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10:1213–1218. doi:10.1038/nmeth.2688. PMID:24097267
  • Chen F, Ding M, Lu Y, et al. Participation of MAP kinase p38 and IkappaB kinase in chromium (VI)-induced NF-kappaB and AP-1 activation. J Environ Pathol Toxicol Oncol. 2000;19:231–238. PMID:10983889
  • Kim S, Yu NK, Kaang BK. CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med. 2015;47:e166. doi:10.1038/emm.2015.33. PMID:26045254
  • Tang Z, Luo OJ, Li X, et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology for Transcription. Cell. 2015;163:1611–1627. doi:10.1016/j.cell.2015.11.024. PMID:26686651
  • Taberlay PC, Achinger-Kawecka J, Lun AT, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–731. doi:10.1101/gr.201517.115. PMID:27053337
  • Ong CT, Corces VG. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet. 2014;15:234–246. doi:10.1038/nrg3663. PMID:24614316
  • Phanstiel DH, Van Bortle K, Spacek D, et al. Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Mol Cell. 2017;67:1037–1048, e6. doi:10.1016/j.molcel.2017.08.006. PMID:28890333
  • Morris SA, Baek S, Sung MH, et al. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat Struct Mol Biol. 2014;21:73–81. doi:10.1038/nsmb.2718. PMID:24317492
  • Ong CT, Corces VG. Modulation of CTCF insulator function by transcription of a noncoding RNA. Dev Cell. 2008;15:489–490. doi:10.1016/j.devcel.2008.09.013. PMID:18854131
  • Lefevre P, Witham J, Lacroix CE, et al. The LPS-induced transcriptional upregulation of the chicken lysozyme locus involves CTCF eviction and noncoding RNA transcription. Mol Cell. 2008;32:129–139. doi:10.1016/j.molcel.2008.07.023. PMID:18851839
  • Losada A. Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer. 2014;14:389–393. doi:10.1038/nrc3743. PMID:24854081
  • Remeseiro S, Cuadrado A, Carretero M, et al. Cohesin-SA1 deficiency drives aneuploidy and tumourigenesis in mice due to impaired replication of telomeres. EMBO J. 2012;31:2076–2089. doi:10.1038/emboj.2012.11. PMID:22415365
  • Poulos RC, Thoms JA, Guan YF, et al. Functional mutations form at CTCF-Cohesin Binding Sites in Melanoma Due to uneven nucleotide excision repair across the motif. Cell Rep. 2016;17:2865–2872. doi:10.1016/j.celrep.2016.11.055. PMID:27974201
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi:10.1038/nmeth.1923. PMID:22388286
  • http://broadinstitute.github.io/picard/.
  • Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137. doi:10.1186/gb-2008-9-9-r137. PMID:18798982
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi:10.1093/bioinformatics/btq033. PMID:20110278
  • Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005;15:1034–1050. doi:10.1101/gr.3715005. PMID:16024819
  • Pollard KS, Hubisz MJ, Rosenbloom KR, et al. Detection of nonneutral substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–121. doi:10.1101/gr.097857.109. PMID:19858363
  • Rosenbloom KR, Armstrong J, Barber GP, et al. The UCSC Genome Browser database: 2015 update. Nucleic Acids Res. 2015;43:D670–D681. doi:10.1093/nar/gku1177. PMID:25428374
  • Ramirez F, Ryan DP, Gruning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–W165. doi:10.1093/nar/gkw257. PMID:27079975
  • Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26. doi:10.1038/nbt.1754. PMID:21221095
  • Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–192. doi:10.1093/bib/bbs017. PMID:22517427
  • Hensley J, Albanus RD, Parker S. https://github.com/ParkerLab/atactk/.
  • Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74. doi:10.1038/nature11247. PMID:22955616
  • Sloan CA, Chan ET, Davidson JM, et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 2016;44:D726–D732. doi:10.1093/nar/gkv1160. PMID:26527727
  • Barrett T, Wilhite SE, Ledoux P, et al. NCBI GEO: archive for functional genomics data sets–update. Nucleic Acids Res. 2013;41:D991–D995. doi:10.1093/nar/gks1193. PMID:23193258
  • Yue F, Cheng Y, Breschi A, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi:10.1038/nature13992. PMID:25409824
  • Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.