1,896
Views
30
CrossRef citations to date
0
Altmetric
Research Paper

DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications

, , , , ORCID Icon & ORCID Icon
Pages 536-556 | Received 23 Mar 2018, Accepted 07 May 2018, Published online: 07 Aug 2018

References

  • Zhou S, Yu Y. Synaptic E-I balance underlies efficient neural coding. Front Neurosci. 2018;12:46. PubMed PMID: 29456491; PubMed Central PMCID: PMC5801300.
  • Hennequin G, Agnes EJ, Vogels TP. Inhibitory plasticity: balance, control, and codependence. Annu Rev Neurosci. 2017 Jul 25;40:557–579.
  • Sprekeler H. Functional consequences of inhibitory plasticity: homeostasis, the excitation-inhibition balance and beyond. Curr Opin Neurobiol. 2017 Apr;43:198–203. PubMed PMID: 28500933.
  • Tatti R, Haley MS, Swanson OK, et al. Neurophysiology and Regulation of the Balance Between Excitation and Inhibition in Neocortical Circuits. Biol Psychiatry. 2017 May 15;81(10):821–831. PubMed PMID: 27865453; PubMed Central PMCID: PMC5374043.
  • Kepecs A, Fishell G. Interneuron cell types are fit to function. Nature. 2014 Jan 16;505(7483):318–326. . PubMed PMID: 24429630; PubMed Central PMCID: PMC4349583.
  • Tremblay R, Lee S, Rudy B. GABAergic Interneurons in the Neocortex: from Cellular Properties to Circuits. Neuron. 2016 Jul 20;91(2):260–292. . PubMed PMID: 27477017; PubMed Central PMCID: PMC4980915.
  • Rubenstein JL, Merzenich MM. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav. 2003 Oct;2(5):255–267. PubMed PMID: 14606691.
  • Levitt P, Eagleson KL, Powell EM. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci. 2004 Jul;27(7):400–406. . PubMed PMID: 15219739.
  • Levitt P. Disruption of interneuron development. PubMed PMID: 16201992 Epilepsia. 2005;46Suppl 7:22–28.
  • Rossignol E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011;2011:649325. PubMed PMID: 21876820; PubMed Central PMCID: PMC3159129.
  • Rubenstein JL. Annual Research Review: development of the cerebral cortex: implications for neurodevelopmental disorders. J Child Psychol Psychiatry. 2011 Apr;52(4):339–355. . PubMed PMID: 20735793; PubMed Central PMCID: PMC3429600.
  • Chattopadhyaya B, Cristo GD. GABAergic circuit dysfunctions in neurodevelopmental disorders. Front Psychiatry. 2012;3:51. PubMed PMID: 22666213; PubMed Central PMCID: PMC3364508.
  • Goulburn AL, Stanley EG, Elefanty AG, et al. Generating GABAergic cerebral cortical interneurons from mouse and human embryonic stem cells. Stem Cell Res. 2012 May;8(3):416–426. PubMed PMID: 22280980.
  • Marin O. Interneuron dysfunction in psychiatric disorders. Nat Reviews Neurosci. 2012 Jan 18;13(2):107–120. . PubMed PMID: 22251963.
  • Volk DW, Matsubara T, Li S, et al. Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia. Am J Psychiatry. 2012 Oct;169(10):1082–1091. PubMed PMID: 22983435; PubMed Central PMCID: PMC3513625.
  • Ye H, Kaszuba S. Inhibitory or excitatory? Optogenetic interrogation of the functional roles of GABAergic interneurons in epileptogenesis. J Biomed Sci. 2017 Dec 5;24(1):93. . PubMed PMID: 29202749; PubMed Central PMCID: PMC5715558.
  • Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Reviews Neurosci. 2006 Sep;7(9):687–696. . PubMed PMID: 16883309.
  • Druga R. Neocortical inhibitory system. Folia Biol (Krakow). 2009;55(6): 201–217. PubMed PMID: 20163769.
  • Gelman DM, Marin O. Generation of interneuron diversity in the mouse cerebral cortex. Eur J Neurosci. 2010 Jun;31(12):2136–2141. . PubMed PMID: 20529125.
  • Sultan KT, Brown KN, Shi SH. Production and organization of neocortical interneurons. Front Cell Neurosci. 2013 Nov 21;7:221.
  • Laclef C, Metin C. Conserved rules in embryonic development of cortical interneurons. Semin Cell Dev Biol. 2017 Sep 14. PubMed PMID: 28918121. doi:10.1016/j.semcdb.2017.09.017
  • Wichterle H, Garcia-Verdugo JM, Herrera DG, et al. Young neurons from medial ganglionic eminence disperse in adult and embryonic brain. Nat Neurosci. 1999 May;2(5):461–466. PubMed PMID: 10321251.
  • Anderson SA, Marin O, Horn C, et al. Distinct cortical migrations from the medial and lateral ganglionic eminences. Development. 2001 Feb;128(3):353–363. PubMed PMID: 11152634.
  • Wichterle H, Turnbull DH, Nery S, et al. In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. Development. 2001 Oct;128(19):3759–3771. PubMed PMID: 11585802.
  • Flames N, Pla R, Gelman DM, et al. Delineation of multiple subpallial progenitor domains by the combinatorial expression of transcriptional codes. J Neuroscience: Official Journal Soc Neurosci. 2007 Sep 05;27(36):9682–9695. PubMed PMID: 17804629; PubMed Central PMCID: PMC4916652.
  • Corbin JG, Butt SJ. Developmental mechanisms for the generation of telencephalic interneurons. Dev Neurobiol. 2011 Aug;71(8):710–732. . PubMed PMID: 21485015.
  • Marin O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci. 2013 Jul;38(1):2019–2029. . PubMed PMID: 23651101.
  • Gelman DM, Martini FJ, Nobrega-Pereira S, et al. The embryonic preoptic area is a novel source of cortical GABAergic interneurons. J Neuroscience: Official Journal Soc Neurosci. 2009 Jul 22;29(29):9380–9389. PubMed PMID: 19625528.
  • Pensold D, Symmank J, Hahn A, et al. The DNA methyltransferase 1 (DNMT1) control the shape and dynamics of migrating POA-derived interneurons fated for the murine cerebral cortex. Cereb Cortex. 2016 Dec 1;27(12):5696–5714. PubMed PMID: 29117290.
  • Symmank J, Goelling V, Gerstmann K, et al. The Transcription Factor LHX1 Regulates the Survival and Directed Migration of POA-derived Cortical Interneurons. Cereb Cortex. 2018. doi:10.1093/cercor/bhy063.
  • Nadarajah B, Parnavelas JG. Modes of neuronal migration in the developing cerebral cortex. Nat Reviews Neurosci. 2002 Jun;3(6):423–432. . PubMed PMID: 12042877.
  • Marin O, Rubenstein JL. A long, remarkable journey: tangential migration in the telencephalon. Nat Reviews Neurosci. 2001 Nov;2(11):780–790. . PubMed PMID: 11715055.
  • Metin C, Baudoin JP, Rakic S, et al. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur J Neurosci. 2006 Feb;23(4):894–900. PubMed PMID: 16519654.
  • Miller MW. Relationship of the time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J Comp Neurol. 1995 Apr 24;355(1):6–14. . PubMed PMID: 7636014.
  • Southwell DG, Paredes MF, Galvao RP, et al. Intrinsically determined cell death of developing cortical interneurons. Nature. 2012 Nov 01;491(7422):109–113. PubMed PMID: 23041929; PubMed Central PMCID: PMC3726009.
  • Uribe E, Wix R. Neuronal migration, apoptosis and bipolar disorder. Rev Psiquiatr Salud Ment. 2012 Apr-Jun;5(2):127–133. . PubMed PMID: 22854584.
  • Denaxa M, Neves G, Rabinowitz A, et al. Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex. Cell Rep. 2018 Feb 13;22(7):1710–1721. PubMed PMID: 29444425.
  • Hu JS, Vogt D, Sandberg M, et al. Cortical interneuron development: a tale of time and space. Development. 2017 Nov 1;144(21):3867–3878. PubMed PMID: 29089360; PubMed Central PMCID: PMC5702067.
  • Symmank J, Zimmer G. Regulation of neuronal survival by DNA methyltransferases. Neural Regeneration Research. 2017 Nov;12(11):1768–1775. . PubMed PMID: 29239313.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003 Mar;33:245–254. PubMed PMID: 12610534.
  • Feng J, Fouse S, Fan G. Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res. 2007 May;61(5 Pt 2):58R–63R. . PubMed PMID: 17413844.
  • Cholewa-Waclaw J, Bird A, Von Schimmelmann M, et al. The Role of Epigenetic Mechanisms in the Regulation of Gene Expression in the Nervous System. J Neuroscience: Official Journal Soc Neurosci. 2016 Nov 09;36(45):11427–11434. PubMed PMID: 27911745; PubMed Central PMCID: PMC5125210.
  • Akbarian S, Beeri MS, Haroutunian V. Epigenetic Determinants of Healthy and Diseased Brain Aging and Cognition. In: JAMA Neurology. 2013. doi:10.1001/jamaneurol.2013.1459
  • Fagiolini M, Jensen CL, Champagne FA. Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol. 2009 Apr;19(2):207–212. . PubMed PMID: 19545993; PubMed Central PMCID: PMC2745597.
  • Mitchell AC, Bharadwaj R, Whittle C, et al. The genome in three dimensions: a new frontier in human brain research. Biol Psychiatry. 2014 Jun 15;75(12):961–969. PubMed PMID: 23958183; PubMed Central PMCID: PMC3925763.
  • Lv J. The Epigenetic Switches for Neural Development and Psychiatric Disorders. J Genet Genomics. 2013 Jul 20;40(7):339–346. PubMed PMID: 23876774..
  • Kumar R, Sanawar R, Li X, et al. Structure, biochemistry, and biology of PAK kinases. Gene. 2017 Mar 20;605:20–31. PubMed PMID: 28007610; PubMed Central PMCID: PMC5250584.
  • Civiero L, Cirnaru MD, Beilina A, et al. Leucine-rich repeat kinase 2 interacts with p21-activated kinase 6 to control neurite complexity in mammalian brain. J Neurochem. 2015 Dec;135(6):1242–1256. PubMed PMID: 26375402; PubMed Central PMCID: PMC4715492.
  • Civiero L, Cogo S, Kiekens A, et al. PAK6 Phosphorylates 14-3-3gamma to Regulate Steady State Phosphorylation of LRRK2. Front Mol Neurosci. 2017;10:417. PubMed PMID: 29311810; PubMed Central PMCID: PMC5735978.
  • Du J, Johnson LM, Jacobsen SE, et al. DNA methylation pathways and their crosstalk with histone methylation. Nature Reviews Molecular Cell Biology. 2015 Sep;16(9):519–532. PubMed PMID: 26296162; PubMed Central PMCID: PMC4672940.
  • Rose NR, Klose RJ. Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta. 2014 Dec;1839(12):1362–1372. . PubMed PMID: 24560929; PubMed Central PMCID: PMC4316174.
  • Vire E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature. 2006 Feb 16;439(7078):871–874. PubMed PMID: 16357870.
  • So AY, Jung JW, Lee S, et al. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PloS One. 2011 May 10;6(5):e19503. PubMed PMID: 21572997; PubMed Central PMCID: PMC3091856.
  • Jenuwein T, Allis CD. Translating the histone code. Science. 2001 Aug 10;293(5532):1074–1080. . PubMed PMID: 11498575.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011 Mar;21(3):381–395. . PubMed PMID: 21321607; PubMed Central PMCID: PMC3193420.
  • Lawrence M, Daujat S, Schneider R. Lateral Thinking: how Histone Modifications Regulate Gene Expression. Trends in Genetics: TIG. 2016 Jan;32(1):42–56. . PubMed PMID: 26704082.
  • Harr JC, Gonzalez-Sandoval A, Gasser SM. Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man. EMBO Rep. 2016 Feb;17(2):139–155. . PubMed PMID: 26792937; PubMed Central PMCID: PMC4783997.
  • Guo C, Chen LH, Huang Y, et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget. 2013 Nov;4(11):2144–2153. PubMed PMID: 24240169; PubMed Central PMCID: PMC3875776.
  • Froimchuk E, Jang Y, Ge K. Histone H3 lysine 4 methyltransferase KMT2D. Gene. 2017 Sep 05;627:337–342.
  • Brici D, Zhang Q, Reinhardt S, et al. Setd1b, encoding a histone 3 lysine 4 methyltransferase, is a maternal effect gene required for the oogenic gene expression program. Development. 2017 Jul 15;144(14):2606–2617. PubMed PMID: 28619824.
  • Lee JH, Tate CM, You JS, et al. Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem. 2007 May 4;282(18):13419–13428. PubMed PMID: 17355966.
  • Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biol. 2010 Mar 15;339(2):240–249. . PubMed PMID: 19703438; PubMed Central PMCID: PMC3711867.
  • Shen E, Shulha H, Weng Z, et al. Regulation of histone H3K4 methylation in brain development and disease. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences. 2014 Sep 26;369(1652). PubMed PMID: 25135975; PubMed Central PMCID: PMC4142035.
  • Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. PubMed PMID: 26077434; PubMed Central PMCID: PMC4501478 Epigenomics. 2015;73:503–519.
  • Nakagawa T, Xiong Y. X-linked mental retardation gene CUL4B targets ubiquitylation of H3K4 methyltransferase component WDR5 and regulates neuronal gene expression. Mol Cell. 2011 Aug 05;43(3):381–391. . PubMed PMID: 21816345; PubMed Central PMCID: PMC3230935.
  • Nakagawa T, Xiong Y. Chromatin regulation by CRL4 E3 ubiquitin ligases: CUL4B targets WDR5 ubiquitylation in the nucleus. Cell Cycle. 2011 Dec 15;10(24):4197–4198. . PubMed PMID: 22107965; PubMed Central PMCID: PMC5442879.
  • Wang P, Lin C, Smith ER, et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase II. Mol Cell Biol. 2009 Nov;29(22):6074–6085. PubMed PMID: 19703992; PubMed Central PMCID: PMC2772563.
  • Bhandare R, Schug J, Le Lay J, et al. Genome-wide analysis of histone modifications in human pancreatic islets. Genome Res. 2010 Apr;20(4):428–433. PubMed PMID: 20181961; PubMed Central PMCID: PMC2847745.
  • Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006 Apr 21;125(2):315–326. PubMed PMID: 16630819.
  • Mikkelsen TS, Ku M, Jaffe DB, et al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature. 2007 Aug 02;448(7153):553–560. PubMed PMID: 17603471; PubMed Central PMCID: PMC2921165.
  • Voigt P, Tee WW, Reinberg D. A double take on bivalent promoters. Genes Dev. 2013 Jun 15;27(12):1318–1338. . PubMed PMID: 23788621; PubMed Central PMCID: PMC3701188.
  • Cui P, Liu W, Zhao Y, et al. Comparative analyses of H3K4 and H3K27 trimethylations between the mouse cerebrum and testis. Genomics, Proteomics & Bioinformatics. 2012 Apr;10(2):82–93. PubMed PMID: 22768982; PubMed Central PMCID: PMC5054206.
  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007 May 18;129(4):823–837. PubMed PMID: 17512414.
  • Burney MJ, Johnston C, Wong KY, et al. An epigenetic signature of developmental potential in neural stem cells and early neurons. Stem Cells. 2013 Sep;31(9):1868–1880. PubMed PMID: 23712654.
  • Hontelez S, Van Kruijsbergen I, Georgiou G, et al. Embryonic transcription is controlled by maternally defined chromatin state. Nat Commun. 2015 Dec 18;6:10148. PubMed PMID: 26679111; PubMed Central PMCID: PMC4703837.
  • Boros J, Arnoult N, Stroobant V, et al. Polycomb repressive complex 2 and H3K27me3 cooperate with H3K9 methylation to maintain heterochromatin protein 1alpha at chromatin. Mol Cell Biol. 2014 Oct 1;34(19):3662–3674. PubMed PMID: 25047840; PubMed Central PMCID: PMC4187721.
  • Jiao L, Liu X. Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science. 2015 Oct 16;350(6258):aac4383. . PubMed PMID: 26472914; PubMed Central PMCID: PMC5220110.
  • Chittock EC, Latwiel S, Miller TC, et al. Molecular architecture of polycomb repressive complexes. Biochem Soc Trans. 2017 Feb 8;45(1):193–205. PubMed PMID: 28202673; PubMed Central PMCID: PMC5310723.
  • Feng X, Juan AH, Wang HA, et al. Polycomb Ezh2 controls the fate of GABAergic neurons in the embryonic cerebellum. Development. 2016 Jun 1;143(11):1971–1980. PubMed PMID: 27068104; PubMed Central PMCID: PMC4920161.
  • Zhao L, Li J, Ma Y, et al. Ezh2 is involved in radial neuronal migration through regulating Reelin expression in cerebral cortex. Sci Rep. 2015 Oct 26;5:15484. PubMed PMID: 26499080; PubMed Central PMCID: PMC4620455.
  • Pereira JD, Sansom SN, Smith J, et al. Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15957–15962. PubMed PMID: 20798045; PubMed Central PMCID: PMC2936600.
  • Ning X, Shi Z, Liu X, et al. DNMT1 and EZH2 mediated methylation silences the microRNA-200b/a/429 gene and promotes tumor progression. Cancer Lett. 2015 Apr 10;359(2):198–205. PubMed PMID: 25595591.
  • Reddington JP, Perricone SM, Nestor CE, et al. Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol. 2013 Mar 25;14(3):R25. PubMed PMID: 23531360; PubMed Central PMCID: PMC4053768.
  • Purkait S, Sharma V, Kumar A, et al. Expression of DNA methyltransferases 1 and 3B correlates with EZH2 and this 3-marker epigenetic signature predicts outcome in glioblastomas. Exp Mol Pathol. 2016 Apr;100(2):312–320. PubMed PMID: 26892683.
  • Wu J, Tang Q, Yang L, et al. Interplay of DNA methyltransferase 1 and EZH2 through inactivation of Stat3 contributes to beta-elemene-inhibited growth of nasopharyngeal carcinoma cells. Sci Rep. 2017 Mar 30;7(1):509. 10.1038/s41598-017-00626-6. PubMed PMID: 28360411; PubMed Central PMCID: PMC5428779.
  • Wang AH, Zare H, Mousavi K, et al. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis. EMBO J. 2013 Apr 17;32(8):1075–1086. PubMed PMID: 23503590; PubMed Central PMCID: PMC3630356.
  • Conway E, Healy E, Bracken AP. PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol. 2015 Dec;37:42–48. PubMed PMID: 26497635.
  • Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007 May 1;21(9):1050–1063. PubMed PMID: 17437993; PubMed Central PMCID: PMC1855231.
  • Girard N, Bazille C, Lhuissier E, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells. PloS One. 2014;9(5):e98176. PubMed PMID: 24852755; PubMed Central PMCID: PMC4031152.
  • Nakagawa S, Sakamoto Y, Okabe H, et al. Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells. Oncol Rep. 2014 Feb;31(2):983–988. PubMed PMID: 24337160.
  • Kikuchi J, Takashina T, Kinoshita I, et al. Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells. Lung Cancer. 2012 Nov;78(2):138–143. PubMed PMID: 22925699; PubMed Central PMCID: PMC3472089.
  • Geiman TM, Robertson KD. Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together?. PubMed PMID: 12244565 J Cell Biochem. 2002;872:117–125.
  • Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005 Oct;15(5):490–495. . PubMed PMID: 16098738.
  • Vaissiere T, Sawan C, Herceg Z. Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutat Res. 2008 Jul-Aug;659(1–2):40–48. . PubMed PMID: 18407786.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Reviews Genet. 2009 May;10(5):295–304. . PubMed PMID: 19308066.
  • Lande-Diner L, Zhang J, Ben-Porath I, et al. Role of DNA methylation in stable gene repression. J Biol Chem. 2007 Apr 20;282(16):12194–12200. PubMed PMID: 17311920.
  • Hashimshony T, Zhang J, Keshet I, et al. The role of DNA methylation in setting up chromatin structure during development. Nat Genet. 2003 Jun;34(2):187–192. PubMed PMID: 12740577.
  • Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991 Sep;55(3):451–458. PubMed PMID: 1943996; PubMed Central PMCID: PMC372829.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology: Official Publication Am Coll Neuropsychopharmacol. 2013 Jan;38(1):23–38. . PubMed PMID: 22781841; PubMed Central PMCID: PMC3521964.
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001 Aug 10;293(5532):1089–1093. . PubMed PMID: 11498579.
  • Martinowich K, Hattori D, Wu H, et al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science. 2003 Oct 31;302(5646):890–893. PubMed PMID: 14593184.
  • Weaver IC, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004 Aug;7(8):847–854. PubMed PMID: 15220929.
  • Weaver IC, Champagne FA, Brown SE, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: altering epigenetic marking later in life. J Neuroscience: Official Journal Soc Neurosci. 2005 Nov 23;25(47):11045–11054. PubMed PMID: 16306417.
  • Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007 Mar 15;53(6):857–869. . PubMed PMID: 17359920.
  • Feng J, Zhou Y, Campbell SL, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci. 2010 Apr;13(4):423–430. PubMed PMID: 20228804; PubMed Central PMCID: PMC3060772.
  • Gavin DP, Chase KA, Sharma RP. Active DNA demethylation in post-mitotic neurons: a reason for optimism. Neuropharmacology. 2013 Dec;75:233–245. PubMed PMID: 23958448; PubMed Central PMCID: PMC3864977.
  • Hermann A, Goyal R, Jeltsch A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. J Biol Chem. 2004 Nov 12;279(46):48350–48359. . PubMed PMID: 15339928.
  • Hirasawa R, Chiba H, Kaneda M, et al. Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev. 2008 Jun 15;22(12):1607–1616. PubMed PMID: 18559477; PubMed Central PMCID: PMC2428059.
  • Bashtrykov P, Jankevicius G, Smarandache A, et al. Specificity of Dnmt1 for methylation of hemimethylated CpG sites resides in its catalytic domain. Chem Biol. 2012 May 25;19(5):572–578. PubMed PMID: 22633409.
  • Chestnut BA, Chang Q, Price A, et al. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neuroscience: Official Journal Soc Neurosci. 2011 Nov 16;31(46):16619–16636. PubMed PMID: 22090490; PubMed Central PMCID: PMC3238138.
  • Kadriu B, Guidotti A, Chen Y, et al. DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol. 2012 Jun 15;520(9):1951–1964. PubMed PMID: 22134929; PubMed Central PMCID: PMC3890098.
  • Hutnick LK, Golshani P, Namihira M, et al. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation. Hum Mol Genet. 2009 Aug 01;18(15):2875–2888. PubMed PMID: 19433415; PubMed Central PMCID: PMC2706688.
  • Fan G, Martinowich K, Chin MH, et al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development. 2005 Aug;132(15):3345–3356. PubMed PMID: 16014513.
  • Hatanaka Y, Zhu Y, Torigoe M, et al. From migration to settlement: the pathways, migration modes and dynamics of neurons in the developing brain. Proc Japan Acad Ser B, Phys Biological Sciences. 2016;92(1):1–19. PubMed PMID: 26755396; PubMed Central PMCID: PMC4880546.
  • Guo J, Anton ES. Decision making during interneuron migration in the developing cerebral cortex. Trends Cell Biol. 2014 Jun;24(6):342–351. . PubMed PMID: 24388877; PubMed Central PMCID: PMC4299592.
  • Peyre E, Silva CG, Nguyen L. Crosstalk between intracellular and extracellular signals regulating interneuron production, migration and integration into the cortex. Front Cell Neurosci. 2015;9:129. PubMed PMID: 25926769; PubMed Central PMCID: PMC4396449.
  • Hernandez-Miranda LR, Parnavelas JG, Chiara F. Molecules and mechanisms involved in the generation and migration of cortical interneurons. ASN Neuro. 2010 Mar 31;2(2):e00031. . PubMed PMID: 20360946; PubMed Central PMCID: PMC2847827.
  • Friocourt G, Liu JS, Antypa M, et al. Both doublecortin and doublecortin-like kinase play a role in cortical interneuron migration. J Neuroscience: Official Journal Soc Neurosci. 2007 Apr 04;27(14):3875–3883. PubMed PMID: 17409252.
  • Britto JM, Johnston LA, Tan SS. The stochastic search dynamics of interneuron migration. Biophys J. 2009 Aug 05;97(3):699–709. . PubMed PMID: 19651028; PubMed Central PMCID: PMC2718142.
  • Martini FJ, Valiente M, Lopez Bendito G, et al. Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development. 2009 Jan;136(1):41–50. PubMed PMID: 19060332.
  • Steinecke A, Gampe C, Nitzsche F, et al. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci. 2014;8:190. PubMed PMID: 25071449; PubMed Central PMCID: PMC4086047.
  • Tielens S, Huysseune S, Godin JD, et al. Elongator controls cortical interneuron migration by regulating actomyosin dynamics. Cell Res. 2016 Oct;26(10):1131–1148. PubMed PMID: 27670698; PubMed Central PMCID: PMC5113307.
  • Maekawa M, Ishizaki T, Boku S, et al. Signaling from rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999 Aug 6;285(5429):895–898. PubMed PMID: WOS:000081860900051; English.
  • Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of rho-associated protein kinases. Neuroscientist. 2007 Oct;13(5):454–469. . PubMed PMID: WOS:000249763300013; English.
  • Besson A, Gurian-West M, Schmidt A, et al. p27(Kip1) modulates cell migration through the regulation of RhoA activation. Genes Dev. 2004 Apr 15;18(8):862–876. PubMed PMID: WOS:000221028500003; English.
  • Godin JD, Thomas N, Laguesse S, et al. p27(KiP1) Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration. Dev Cell. 2012 Oct 16;23(4):729–744. PubMed PMID: WOS:000310036200010; English.
  • Zhao ZS, Manser E. PAK and other Rho-associated kinases - effectors with surprisingly diverse mechanisms of regulation. Biochem J. 2005 Mar 1;386:201–214.
  • Zhao ZS, Manser E. PAK family kinases: physiological roles and regulation. Cell Logist. 2012 Apr 01;2(2):59–68. . PubMed PMID: 23162738; PubMed Central PMCID: PMC3490964.
  • Sharma A, Klein SS, Barboza L, et al. Principles Governing DNA Methylation during Neuronal Lineage and Subtype Specification. J Neuroscience: Official Journal Soc Neurosci. 2016 Feb 3;36(5):1711–1722. PubMed PMID: 26843651; PubMed Central PMCID: PMC4737779.
  • Clements EG, Mohammad HP, Leadem BR, et al. DNMT1 modulates gene expression without its catalytic activity partially through its interactions with histone-modifying enzymes. Nucleic Acids Res. 2012 May;40(10):4334–4346. PubMed PMID: 22278882; PubMed Central PMCID: PMC3378872.
  • Milutinovic S, Brown SE, Zhuang Q, et al. DNA methyltransferase 1 knock down induces gene expression by a mechanism independent of DNA methylation and histone deacetylation. J Biol Chem. 2004 Jul 2;279(27):27915–27927. PubMed PMID: 15087453.
  • Espada J, Peinado H, Lopez-Serra L, et al. Regulation of SNAIL1 and E-cadherin function by DNMT1 in a DNA methylation-independent context. Nucleic Acids Res. 2011 Nov;39(21):9194–9205. PubMed PMID: 21846773; PubMed Central PMCID: PMC3241660.
  • Kondo Y. Epigenetic cross-talk between DNA methylation and histone modifications in human cancers. Yonsei Med J. 2009 Aug 31;50(4):455–463. . PubMed PMID: 19718392; PubMed Central PMCID: PMC2730606.
  • Cheng X. Structural and functional coordination of DNA and histone methylation. Cold Spring Harb Perspect Biol. 2014 Aug 1;6(8). PubMed PMID: 25085914; PubMed Central PMCID: PMC4107986. doi:10.1101/cshperspect.a018747.
  • Barrera LO, Li Z, Smith AD, et al. Genome-wide mapping and analysis of active promoters in mouse embryonic stem cells and adult organs. Genome Res. 2008 Jan;18(1):46–59. PubMed PMID: 18042645; PubMed Central PMCID: PMC2134779.
  • Guenther MG, Jenner RG, Chevalier B, et al. Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8603–8608. PubMed PMID: 15941828; PubMed Central PMCID: PMC1150839.
  • Guenther MG, Levine SS, Boyer LA, et al. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007 Jul 13;130(1):77–88. PubMed PMID: 17632057; PubMed Central PMCID: PMC3200295.
  • Li F, Wan M, Zhang B, et al. Bivalent Histone Modifications and Development. Curr Stem Cell Res Ther. 2018;13(2):83–90. PubMed PMID: 28117006.
  • Van Kruijsbergen I, Hontelez S, Veenstra GJ. Recruiting polycomb to chromatin. Int J Biochem Cell Biol. 2015 Oct;67:177–187. PubMed PMID: 25982201; PubMed Central PMCID: PMC4564301.
  • Shen X, Liu Y, Hsu YJ, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. Mol Cell. 2008 Nov 21;32(4):491–502. PubMed PMID: 19026780; PubMed Central PMCID: PMC2630502.
  • Margueron R, Li G, Sarma K, et al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. Mol Cell. 2008 Nov 21;32(4):503–518. PubMed PMID: 19026781; PubMed Central PMCID: PMC3641558.
  • Hoffmann MJ, Engers R, Florl AR, et al. Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther. 2007 Sep;6(9):1403–1412. PubMed PMID: 18637271.
  • Fiskus W, Buckley K, Rao R, et al. Panobinostat treatment depletes EZH2 and DNMT1 levels and enhances decitabine mediated de-repression of JunB and loss of survival of human acute leukemia cells. Cancer Biol Ther. 2009 May;8(10):939–950. PubMed PMID: 19279403; PubMed Central PMCID: PMC2775142.
  • Wu X, Gong Y, Yue J, et al. Cooperation between EZH2, NSPc1-mediated histone H2A ubiquitination and Dnmt1 in HOX gene silencing. Nucleic Acids Res. 2008 Jun;36(11):3590–3599. PubMed PMID: 18460542; PubMed Central PMCID: PMC2441805.
  • Juan AH, Kumar RM, Marx JG, et al. Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells. Mol Cell. 2009 Oct 9;36(1):61–74. PubMed PMID: 19818710; PubMed Central PMCID: PMC2761245.
  • Chen BF, Suen YK, Gu S, et al. A miR-199a/miR-214 self-regulatory network via PSMD10, TP53 and DNMT1 in testicular germ cell tumor. Sci Rep. 2014 Sep 18;4:6413. PubMed PMID: 25231260; PubMed Central PMCID: PMC4166711.
  • Holoch D, Margueron R. Mechanisms Regulating PRC2 Recruitment and Enzymatic Activity. Trends Biochem Sci. 2017 Jul;42(7):531–542. . PubMed PMID: 28483375.
  • Ba MC, Long H, Cui SZ, et al. Long noncoding RNA LINC00673 epigenetically suppresses KLF4 by interacting with EZH2 and DNMT1 in gastric cancer. Oncotarget. 2017 Nov 10;8(56):95542–95553. PubMed PMID: 29221147; PubMed Central PMCID: PMC5707041.
  • Sun M, Nie F, Wang Y, et al. LncRNA HOXA11-AS Promotes Proliferation and Invasion of Gastric Cancer by Scaffolding the Chromatin Modification Factors PRC2, LSD1, and DNMT1. Cancer Res. 2016 Nov 1;76(21):6299–6310. PubMed PMID: 27651312.
  • Hatta M, Naganuma K, Kato K, et al. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line. Biochem Biophys Res Commun. 2015 Dec 4–11;468(1–2):269–273. PubMed PMID: 26505792.
  • Choudhury SR, Balasubramanian S, Chew YC, et al. (-)-Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells. Carcinogenesis. 2011 Oct;32(10):1525–1532. PubMed PMID: 21798853; PubMed Central PMCID: PMC3179425.
  • Zimmer G, Rudolph J, Landmann J, et al. Bidirectional ephrinB3/EphA4 signaling mediates the segregation of medial ganglionic eminence- and preoptic area-derived interneurons in the deep and superficial migratory stream. J Neuroscience: Official Journal Soc Neurosci. 2011 Dec 14;31(50):18364–18380. PubMed PMID: 22171039.
  • Haring M, Offermann S, Danker T, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 2007 Sep 24;3:11. PubMed PMID: 17892552; PubMed Central PMCID: PMC2077865.
  • Madisen L, Zwingman TA, Sunkin SM, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010 Jan;13(1):133–140. PubMed PMID: 20023653; PubMed Central PMCID: PMC2840225.
  • Jackson-Grusby L, Beard C, Possemato R, et al. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet. 2001 Jan;27(1):31–39. PubMed PMID: 11137995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.