3,196
Views
10
CrossRef citations to date
0
Altmetric
Research Paper

Genome-wide DNA methylation and transcriptomic profiles in the lifestyle strategies and asexual development of the forest fungal pathogen Heterobasidion parviporum

ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 16-40 | Received 08 Oct 2018, Accepted 20 Dec 2018, Published online: 19 Jan 2019

References

  • Asiegbu FO, Adomas A, Stenlid J. Conifer root and butt rot caused by heterobasidion annosum (fr.) bref. s.l. Mol Plant Pathol. 2005 Jul;6(4):395–409. PubMed PMID: WOS:000230765100003; English.
  • Berger SL, Kouzarides T, Shiekhattar R, et al. An operational definition of epigenetics. Genes Dev. 2009 Apr 1;23(7):781–783. PubMed PMID: 19339683; PubMed Central PMCID: PMCPMC3959995.
  • Zemach A, Zilberman D. Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol. 2010 Sep 14;20(17):R780–5. PubMed PMID: 20833323.
  • Finnegan EJ, Peacock WJ, Dennis ES. DNA methylation, a key regulator of plant development and other processes. Curr Opin Genet Dev. 2000 Apr;10(2):217–223. PubMed PMID: 10753779.
  • Weber M, Schubeler D. Genomic patterns of DNA methylation: targets and function of an epigenetic mark. Curr Opin Cell Biol. 2007 Jun;19(3):273–280. PubMed PMID: WOS:000247775200005; English.
  • Su Z, Han L, Zhao Z. Conservation and divergence of DNA methylation in eukaryotes: new insights from single base-resolution DNA methylomes. Epigenetics-Us. 2011 Feb;6(2):134–140. PubMed PMID: 20962593; PubMed Central PMCID: PMCPMC3278781.
  • Zemach A, McDaniel IE, Silva P, et al. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 2010 May 14;328(5980):916–919. PubMed PMID: WOS:000277618800056; English.
  • Jeon J, Choi J, Lee GW, et al. Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, magnaporthe oryzae. Sci Rep-Uk. 2015 Feb 24;5. Artn 8567. DOI:10.1038/Srep08567. PubMed PMID: WOS:000349798800001; English.
  • Li WZ, Wang YL, Zhu JY, et al. Differential DNA methylation may contribute to temporal and spatial regulation of gene expression and the development of mycelia and conidia in entomopathogenic fungus metarhizium robertsii. Fungal Biol-Uk. 2017 Mar;121(3):293–303. PubMed PMID: WOS:000395614700008; English.
  • Zhu YJ, Xu J, Sun C, et al. Chromosome-level genome map provides insights into diverse defense mechanisms in the medicinal fungus ganoderma sinense. Sci Rep-Uk. 2015 Jun 5;5. UNSP 11087. DOI:10.1038/srep11087. PubMed PMID: WOS:000355879400001; English.
  • So KK, Ko YH, Chun J, et al. Global DNA methylation in the chestnut blight fungus cryphonectria parasitica and genome-wide changes in DNA methylation accompanied with sectorization. Front Plant Sci. 2018;9:103. PubMed PMID: 29456549; PubMed Central PMCID: PMCPMC5801561.
  • Montanini B, Chen PY, Morselli M, et al. Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol. 2014;15(7). ARTN 411. DOI:10.1186/s13059-014-0411-5. PubMed PMID: WOS:000346603300007; English.
  • Mishra PK, Baum M, Carbon J. DNA methylation regulates phenotype-dependent transcriptional activity in candida albicans. Proc Natl Acad Sci USA. 2011 Jul 19;108(29):11965–11970. PubMed PMID: 21730141; PubMed Central PMCID: PMCPMC3141964.
  • Zeng Z, Sun H, Vainio EJ, et al. Intraspecific comparative genomics of isolates of the Norway spruce pathogen (Heterobasidion parviporum) and identification of its potential virulence factors. Bmc Genomics. 2018 Mar 27;19. ARTN 220. DOI:10.1186/s12864-018-4610-4. PubMed PMID: WOS:000428709900004; English.
  • Shelest E. Transcription factors in fungi. Fems Microbiol Lett. 2008 Sep;286(2):145–151. . PubMed PMID: WOS:000258402200001; English.
  • Turra D, Segorbe D, Di Pietro A. Protein kinases in plant-pathogenic fungi: conserved regulators of infection. Annu Rev Phytopathol. 2014;52:267–288. PubMed PMID: WOS:000348457000013; English.
  • Harris SD. Cdc42/Rho GTPases in fungi: variations on a common theme. Mol Microbiol. 2011 Mar;79(5):1123–1127. PubMed PMID: WOS:000287589000002; English.
  • Chhatriwala MK, Bow L, Worthylake DK, et al. The DH and PH domains of trio coordinately engage rho GTPases for their efficient activation. J Mol Biol. 2007 May 18;368(5):1307–1320. PubMed PMID: WOS:000246443200009; English.
  • Herranz S, Rodriguez JM, Bussink HJ, et al. Arrestin-related proteins mediate pH signaling in fungi. Proc Natl Acad Sci USA. 2005 Aug 23;102(34):12141–12146. PubMed PMID: WOS:000231476500034; English.
  • Krogan NJ, Dover J, Khorrami S, et al. COMPASS, a histone H3 (lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem. 2002 Mar 29;277(13):10753–10755. PubMed PMID: WOS:000174613100002; English.
  • Roguev A, Schaft D, Shevchenko A, et al. The saccharomyces cerevisiae set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. Embo J. 2001 Dec 17;20(24):7137–7148. PubMed PMID: 11742990; PubMed Central PMCID: PMCPMC125774.
  • Leulliot N, Quevillon-Cheruel S, Sorel I, et al. Structure of protein phosphatase methyltransferase 1 (PPM1), a leucine carboxyl methyltransferase involved in the regulation of protein phosphatase 2A activity. J Biol Chem. 2004 Feb 27;279(9):8351–8358. PubMed PMID: WOS:000189103300117; English.
  • Samuelsen CO, Baraznenok V, Khorosjutina O, et al. TRAP230/ARC240 and TRAP240/ARC250 mediator subunits are functionally conserved through evolution. Proc Natl Acad Sci U S A. 2003 May 27;100(11):6422–6427. PubMed PMID: WOS:000183190700026; English.
  • Chitty JL, Fraser JA. Purine acquisition and synthesis by human fungal pathogens. Microorganisms. 2017 Jun 8;5(2):33. PubMed PMID: 28594372; PubMed Central PMCID: PMCPMC5488104.
  • Rytioja J, Hilden K, Yuzon J, et al. Plant-polysaccharide-degrading enzymes from basidiomycetes. Microbiol Mol Biol R. 2014 Dec;78(4):614–649. PubMed PMID: WOS:000345596000003; English.
  • Olson A, Aerts A, Asiegbu F, et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 2012 Jun;194(4):1001–1013. PubMed PMID: WOS:000303435400014; English.
  • Amselem J, Lebrun MH, Quesneville H. Whole genome comparative analysis of transposable elements provides new insight into mechanisms of their inactivation in fungal genomes. Bmc Genomics. 2015 Feb 28;16:141. ARTN 141. PubMed PMID: WOS:000350722700001; English.
  • Huang RR, Ding QQ, Xiang YN, et al. Comparative analysis of DNA methyltransferase gene family in fungi: a focus on basidiomycota. Front Plant Sci. 2016 Oct 21;7. ARTN 1556. DOI:10.3389/fpls.2016.01556. PubMed PMID: WOS:000385889300001; English.
  • Kuo HC, Hui S, Choi J, et al. Secret lifestyles of neurospora crassa. Sci Rep-Uk. 2014 May 30;4. Artn 5135. DOI:10.1038/Srep05135. PubMed PMID: WOS:000336529300007; English.
  • Vasiliauskas R, Menkis A, Finlay RD, et al. Wood-decay fungi in fine living roots of conifer seedlings. New Phytol. 2007;174(2):441–446. PubMed PMID: 17388906.
  • Jaber E, Xiao CW, Asiegbu FO. Comparative pathobiology of heterobasidion annosum during challenge on pinus sylvestris and arabidopsis roots: an analysis of defensin gene expression in two pathosystems. Planta. 2014 Mar;239(3):717–733. PubMed PMID: WOS:000331648500015; English.
  • Deacon J. Fungal spores, spore dormancy, and spore dispersal in: fungal biology. Malden, MA: Blackwell Pub; 2005. p. 184–212.
  • Li GS, Osborne J, Asiegbu FO. A macroarray expression analysis of novel cDNAs vital for growth initiation and primary metabolism during development of heterobasidion parviporum conidiospores. Environ Microbiol. 2006 Aug;8(8):1340–1350. PubMed PMID: WOS:000238885300004; English.
  • Hagiwara D, Takahashi H, Kusuya Y, et al. Comparative transcriptome analysis revealing dormant conidia and germination associated genes in Aspergillus species: an essential role for AtfA in conidial dormancy. Bmc Genomics. 2016 May;17;17. ARTN 358. DOI:10.1186/s12864-016-2689-z. PubMed PMID: WOS:000376356000001; English..
  • Sharma M, Sengupta A, Ghosh R, et al. Genome wide transcriptome profiling of fusarium oxysporum f sp ciceris conidial germination reveals new insights into infection-related genes. Sci Rep-Uk. 2016 Nov 17;6. ARTN 37353. DOI:10.1038/srep37353. PubMed PMID: WOS:000388272400001; English.
  • Calvo AM, Wilson RA, Bok JW, et al. Relationship between secondary metabolism and fungal development. Microbiol Mol Biol R. 2002 Sep;66(3):447-+. PubMed PMID: WOS:000177857300005; English.
  • Bicho CC, Alves FD, Chen ZA, et al. A genetic engineering solution to the “Arginine Conversion Problem” in stable isotope labeling by Amino Acids in Cell Culture (SILAC). Mol Cell Proteomics. 2010 Jul 9;(7):1567–1577. DOI:10.1074/mcp.M110.000208. PubMed PMID: WOS:000279397200016; English.
  • Nahlik K, Dumkow M, Bayram O, et al. The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol. 2010 Nov;78(4):964–979. PubMed PMID: 21062371.
  • Shain L. Dynamic-responses of differentiated sapwood to injury and infection. Phytopathology. 1979;69(10):1143–1147. PubMed PMID: WOS:A1979HU86600024; English.
  • Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81:65–95. PubMed PMID: WOS:000305765500005; English.
  • Liu Y, N L, Yin YN, et al. Histone H3K4 methylation regulates hyphal growth, secondary metabolism and multiple stress responses in fusarium graminearum. Environ Microbiol. 2015 Nov;17(11):4615–4630. PubMed PMID: WOS:000366139500035; English.
  • Pham KTM, Inoue Y, Vu BV, et al. MoSET1 (Histone H3K4 methyltransferase in magnaporthe oryzae) regulates global gene expression during infection-related morphogenesis. Plos Genet. 2015 Jul;11(7). ARTN e1005385. DOI:10.1371/journal.pgen.1005385. PubMed PMID: WOS:000360622200043; English.
  • Raffaele S, Kamoun S. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol. 2012 Jun;10(6):417–430. PubMed PMID: WOS:000304189900016; English.
  • Veluchamy A, Lin X, Maumus F, et al. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nat Commun. 2013 Jul;4. ARTN 2091. DOI:10.1038/ncomms3091. PubMed PMID: WOS:000323714900001; English.
  • Gao F, Liu XL, Wu XP, et al. Differential DNA methylation in discrete developmental stages of the parasitic nematode trichinella spiralis. Genome Biol. 2012;13(10):R100. ARTN R100. PubMed PMID: WOS:000313183900019; English.
  • Seetharam A, Stuart GW. A study on the distribution of 37 well conserved families of C2H2 zinc finger genes in eukaryotes. Bmc Genomics. 2013 Jun 24;14. Artn 420. DOI:10.1186/1471-2164-14-420. PubMed PMID: WOS:000321390000001; English.
  • Sarkar M, Ghosh MK. DEAD box RNA helicases: crucial regulators of gene expression and oncogenesis. Front Biosci-Landmrk. 2016 Jan 1;21:225–250. PubMed PMID: WOS:000369078400001; English.
  • Xu C, Min JR. Structure and function of WD40 domain proteins. Protein Cell. 2011 Mar;2(3):202–214. PubMed PMID: WOS:000310519700005; English.
  • Jonkers W, Rep M. Lessons from fungal F-box proteins. Eukaryot Cell. 2009 May;8(5):677–695. PubMed PMID: WOS:000265906000001; English.
  • Voronin DA, Kiseleva EV. Functional role of proteins containing ankyrin repeats. Cell Tissue Biol. 2008;2(1):1–12.
  • Zeng Z, Raffaello T, Liu MX, et al. Co-extraction of genomic DNA & total RNA from recalcitrant woody tissues for next-generation sequencing studies. Future Sci OA. 2018;FSO306.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012 Mar 4;9(4):357–359. PubMed PMID: 22388286; PubMed Central PMCID: PMCPMC3322381.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics. 2011 Jun 1;27(11):1571–1572. . PubMed PMID: WOS:000291062400018; English.
  • R-Core-Team. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
  • Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009 Sep;19(9):1639–1645. PubMed PMID: WOS:000269482200015; English.
  • Dolzhenko E, Smith AD. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. Bmc Bioinformatics. 2014 Jun 24;15:215. Artn 215. PubMed PMID: WOS:000339406300001; English.
  • Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan;29(1):15–21. PubMed PMID: WOS:000312654600003; English.
  • Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015 Jan 15;31(2):166–169. PubMed PMID: WOS:000347832300003; English.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 1;26(1):139–140. PubMed PMID: WOS:000273116100025; English.
  • Anders S, McCarthy DJ, Chen YS, et al. Count-based differential expression analysis of RNA sequencing data using R and bioconductor. Nat Protoc. 2013 Sep;8(9):1765–1786. PubMed PMID: WOS:000323768600011; English.
  • Conesa A, Gotz S, Garcia-Gomez JM, et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005 Sep 15;21(18):3674–3676. PubMed PMID: WOS:000231694600016; English.
  • Jones P, Binns D, Chang HY, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014 May 1;30(9):1236–1240. PubMed PMID: WOS:000336095100007; English.
  • Alexa A, R J. topGO: enrichment analysis for gene ontology. R Package Version. 2016;2:30.
  • Xie C, Mao XZ, Huang JJ, et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011 Jul;39:W316–W322. PubMed PMID: WOS:000292325300051; English.
  • Lerat E, Fablet M, Modolo L, et al. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. 2017 Feb 28;45(4):e17. PubMed PMID: 28204592; PubMed Central PMCID: PMCPMC5389681.
  • Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017 Jan 4;45(D1):D158–D169. PubMed PMID: WOS:000396575500025; English.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016 Jul;33(7):1870–1874. PubMed PMID: WOS:000378767100018; English.
  • Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004 Mar;32(5):1792–1797. PubMed PMID: WOS:000220487200025; English.