2,878
Views
16
CrossRef citations to date
0
Altmetric
Research Paper

Mutation dynamics of CpG dinucleotides during a recent event of vertebrate diversification

ORCID Icon, , ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 685-707 | Received 06 Mar 2019, Accepted 15 Apr 2019, Published online: 09 May 2019

References

  • Brawand D, Wagner CE, Li YI, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014 Sep 18;513(7518):375–381. PubMed PMID: 25186727.
  • Carneiro M, Albert FW, Afonso S, et al. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet. 2014 Aug;10(8):e1003519. PubMed PMID: 25166595; PubMed Central PMCID: PMC4148185.
  • Carneiro M, Rubin CJ, Di Palma F, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication. Science. 2014 Aug 29;345(6200):1074–1079. PubMed PMID: 25170157.
  • Guenther CA, Tasic B, Luo L, et al. A molecular basis for classic blond hair color in Europeans. Nat Genet. 2014 Jul;46(7):748–752. PubMed PMID: 24880339.
  • Rubin CJ, Zody MC, Eriksson J, et al. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature. 2010 Mar 25;464(7288):587–591. PubMed PMID: 20220755.
  • Price EO. Animal domestication and behavior. Wallinford: CABI; 2003.
  • Jensen P. Behavior genetics and the domestication of animals. Annu Rev Anim Biosci. 2014 Feb;2:85–104. PubMed PMID: 25384136.
  • Storey AA, Athens JS, Bryant D, et al. Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS One. 2012;7(7):e39171. PubMed PMID: 22848352; PubMed Central PMCID: PMCPMC3405094.
  • Underhill AP. Current Issues in Chinese Neolithic Archaeology. J World Prehistory. 1997;11:103–160.
  • Brisson D. The directed mutation controversy in an evolutionary context. Crit Rev Microbiol. 2003;29(1): 25–35. PubMed PMID: 12638717.
  • Lenski RE, Mittler JE. The directed mutation controversy and neo-Darwinism. Science. 1993;259(5092): 188–194. PubMed PMID: 7678468.
  • Dobzhansky T, Ayala F, Stebbins GL, et al. Evolution. San Francisco, CA, USA: W.H. Freeman and Company; 1988.
  • Guerrero-Bosagna C. Finalism in Darwinian and Lamarckian evolution: lessons from epigenetics and developmental biology. Evol Biol. 2012;9(3):283–300.
  • Singal R, Ginder GD. DNA methylation. Blood. 1999 Jun 15;93(12):4059–4070. PubMed PMID: 10361102.
  • Coulondre C, Miller JH, Farabaugh PJ, et al. Molecular basis of base substitution hotspots in Escherichia coli. Nature. 1978 Aug 24;274(5673):775–780. PubMed PMID: 355893.
  • Huttley GA. Modeling the impact of DNA methylation on the evolution of BRCA1 in mammals. Mol Biol Evol. 2004 Sep;21(9):1760–1768. . PubMed PMID: 15190129.
  • Tomatsu S, Orii KO, Islam MR, et al. Methylation patterns of the human beta-glucuronidase gene locus: boundaries of methylation and general implications for frequent point mutations at CpG dinucleotides. Genomics. 2002 Mar;79(3):363–375. PubMed PMID: 11863366.
  • Tsunoyama K, Bellgard MI, Gojobori T. Intragenic variation of synonymous substitution rates is caused by nonrandom mutations at methylated CpG. PubMed PMID: 11675605 J Mol Evol. 2001;534–5:456–464.
  • Ying H, Huttley G. Exploiting CpG hypermutability to identify phenotypically significant variation within human protein-coding genes. Genome Biol Evol. 2011;3:938–949. PubMed PMID: 21398426; PubMed Central PMCID: PMC3184784.
  • Kong A, Frigge ML, Masson G, et al. Rate of de novo mutations and the importance of father‘s age to disease risk. Nature. 2012 Aug 23;488(7412):471–475. PubMed PMID: 22914163; PubMed Central PMCID: PMC3548427.
  • Sved J, Bird A. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4692–4696. PubMed PMID: 2352943.
  • Simmen MW. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals. Genomics. 2008 Jul;92(1):33–40. PubMed PMID: 18485662.
  • Zemojtel T, Kielbasa SM, Arndt PF, et al. CpG deamination creates transcription factor-binding sites with high efficiency. Genome Biol Evol. 2011;3:1304–1311. PubMed PMID: 22016335; PubMed Central PMCID: PMC3228489.
  • Rosenberg MS, Subramanian S, Kumar S. Patterns of transitional mutation biases within and among mammalian genomes. Mol Biol Evol. 2003 Jun;20(6):988–993. . PubMed PMID: 12716982.
  • Walser JC, Furano AV. The mutational spectrum of non-CpG DNA varies with CpG content. Genome Res. 2010 Jul;20(7):875–882. . PubMed PMID: 20498119; PubMed Central PMCID: PMCPMC2892088.
  • Guerrero-Bosagna C, Sabat P, Valladares L. Environmental signaling and evolutionary change: can exposure of pregnant mammals to environmental estrogens lead to epigenetically induced evolutionary changes in embryos?. Evol Dev. 2005;7(4): 341–350. PubMed PMID: 15982371.
  • Cortijo S, Wardenaar R, Colome-Tatche M, et al. Mapping the epigenetic basis of complex traits. Science. 2014 Mar 07;343(6175):1145–1148. PubMed PMID: 24505129.
  • Johannes F, Porcher E, Teixeira FK, et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009 Jun;5(6):e1000530. PubMed PMID: 19557164; PubMed Central PMCID: PMCPMC2696037.
  • Fukuda K, Inoguchi Y, Ichiyanagi K, et al. Evolution of the sperm methylome of primates is associated with retrotransposon insertions and genome instability. Hum Mol Genet. 2017 Sep 15;26(18):3508–3519. PubMed PMID: 28637190.
  • Macia A, Munoz-Lopez M, Cortes JL, et al. Epigenetic control of retrotransposon expression in human embryonic stem cells. Mol Cell Biol. 2011 Jan;31(2):300–316. PubMed PMID: 21041477; PubMed Central PMCID: PMC3019972.
  • Skinner MK, Guerrero-Bosagna C, Haque MM, et al. Epigenetics and the evolution of Darwin‘s Finches. Genome Biol Evol. 2014 Aug;6(8):1972–1989. PubMed PMID: 25062919; PubMed Central PMCID: PMC4159007.
  • Smith TA, Martin MD, Nguyen M, et al. Epigenetic divergence as a potential first step in darter speciation. Mol Ecol. 2016 Apr;25(8):1883–1894. PubMed PMID: 26837057.
  • Li J, Li R, Wang Y, et al. Genome-wide DNA methylome variation in two genetically distinct chicken lines using MethylC-seq. BMC Genomics. 2015 Oct 23;16:851. 10.1186/s12864-015-2098-8. PubMed PMID: 26497311; PubMed Central PMCID: PMCPMC4619007.
  • Mugal CF, Wolf JB, von Grunberg HH, et al. Conservation of neutral substitution rate and substitutional asymmetries in mammalian genes. Genome Biol Evol. 2010 Jan 6;2:19–28. PubMed PMID: 20333222; PubMed Central PMCID: PMCPMC2839347.
  • Molaro A, Hodges E, Fang F, et al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell. 2011 Sep 16;146(6):1029–1041. PubMed PMID: 21925323; PubMed Central PMCID: PMC3205962.
  • Olsen AK, Andreassen A, Singh R, et al. Environmental exposure of the mouse germ line: DNA adducts in spermatozoa and formation of de novo mutations during spermatogenesis. PLoS One. 2010;5(6):e11349. PubMed PMID: 20596530; PubMed Central PMCID: PMC2893163.
  • Skinner MK, Guerrero-Bosagna C, Haque MM. Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations. PubMed PMID: 26237076; PubMed Central PMCID: PMCPMC4622673 Epigenetics. 2015;108:762–771.
  • Pertille F, Guerrero-Bosagna C, Silva VH, et al. High-throughput and Cost-effective Chicken Genotyping Using Next-Generation Sequencing. Sci Rep. 2016 May 25;6:26929. PubMed PMID: 27220827; PubMed Central PMCID: PMCPMC4879531.
  • Zhbannikov IY, Hunter SS, Settles ML SEQYCLEAN User Manual. cited 2016 Nov 2. Available from: https://githubcom/ibest/seqyclean. 2013
  • Beaumont MA. Adaptation and speciation: what can F(st) tell us? Trends Ecol Evol. 2005 Aug;20(8):435–440. . PubMed PMID: 16701414.
  • Pertille F, Brantsaeter M, Nordgreen J, et al. DNA methylation profiles in red blood cells of adult hens correlate to their rearing conditions. J Exp Biol. 2017 Aug 07 PubMed PMID: 28784681. DOI:10.1242/jeb.157891.
  • Schluter D, Conte GL. Genetics and ecological speciation. Proc Natl Acad Sci U S A. 2009 Jun 16;106 Suppl 1:9955–9962.
  • Wolf JB, Lindell J, Backstrom N. Speciation genetics: current status and evolving approaches. Philos Trans R Soc London, Ser B. 2010 Jun 12;365(1547):1717–1733. . PubMed PMID: 20439277; PubMed Central PMCID: PMCPMC2871893.
  • Wolf JB, Ellegren H. Making sense of genomic islands of differentiation in light of speciation. Nat Rev Genet. 2017 Feb;18(2):87–100. . PubMed PMID: 27840429.
  • Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007 Apr;8(4):253–262. . PubMed PMID: 17363974.
  • Chacon-Sanchez MI, Martinez-Castillo J. Testing domestication scenarios of Lima Bean (Phaseolus lunatus L.) in Mesoamerica: insights from genome-wide genetic markers. Front Plant Sci. 2017;8:1551. PubMed PMID: 28955351; PubMed Central PMCID: PMCPMC5601060.
  • Ponting CP, Lunter G. Signatures of adaptive evolution within human non-coding sequence. Hum Mol Genet. 2006 Oct 15;15(2):R170–5. . PubMed PMID: 16987880.
  • Collins DW, Jukes TH. Rates of transition and transversion in coding sequences since the human-rodent divergence. Genomics. 1994 Apr;20(3):386–396. . PubMed PMID: 8034311.
  • Djebali S, Davis CA, Merkel A, et al. Landscape of transcription in human cells. Nature. 2012 Sep 6;489(7414):101–108. PubMed PMID: 22955620; PubMed Central PMCID: PMCPMC3684276.
  • van Bakel H, Nislow C, Blencowe BJ, et al. Most “dark matter” transcripts are associated with known genes. PLoS Biol. 2010 May 18;8(5):e1000371. PubMed PMID: 20502517; PubMed Central PMCID: PMCPMC2872640.
  • Caminsky N, Mucaki EJ, Rogan PK. Interpretation of mRNA splicing mutations in genetic disease: review of the literature and guidelines for information-theoretical analysis. F1000Res. 2014;3:282. PubMed PMID: 25717368; PubMed Central PMCID: PMCPMC4329672.
  • Friedman LS, Ostermeyer EA, Szabo CI, et al. Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nat Genet. 1994 Dec;8(4):399–404. PubMed PMID: 7894493.
  • Hutton M, Lendon CL, Rizzu P, et al. Association of missense and 5‘-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998 Jun 18;393(6686):702–705. PubMed PMID: 9641683.
  • Pennacchio LA, Lehesjoki AE, Stone NE, et al. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science. 1996 Mar 22;271(5256):1731–1734. PubMed PMID: 8596935.
  • Carvalho GA, Weiss RE, Refetoff S. Complete thyroxine-binding globulin (TBG) deficiency produced by a mutation in acceptor splice site causing frameshift and early termination of translation (TBG-Kankakee). J Clin Endocrinol Metab. 1998 Oct;83(10):3604–3608. . PubMed PMID: 9768672.
  • Kaessmann H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 2010 Oct;20(10):1313–1326. . PubMed PMID: 20651121; PubMed Central PMCID: PMCPMC2945180.
  • O’Dushlaine CT, Edwards RJ, Park SD, et al. Tandem repeat copy-number variation in protein-coding regions of human genes. Genome Biol. 2005;6(8):R69. PubMed PMID: 16086851; PubMed Central PMCID: PMCPMC1273636.
  • Myers RH. Huntington‘s disease genetics. NeuroRx. 2004 Apr;1(2):255–262. . PubMed PMID: 15717026; PubMed Central PMCID: PMCPMC534940.
  • Hull RM, Cruz C, Jack CV, et al. Environmental change drives accelerated adaptation through stimulated copy number variation. PLoS Biol. 2017 Jun;15(6):e2001333. PubMed PMID: 28654659; PubMed Central PMCID: PMCPMC5486974.
  • Adelson D, Buckley R, Ivancevic A, et al. Retrotransposons: genomic and trans-genomic agents of change. In: Pontarotti P, editor. Evolutionary biology: biodiversification from genotype to phenotype. Switzerland: Springer; 2015. p. 55–76
  • Kazazian HH Jr., Moran JV. The impact of L1 retrotransposons on the human genome. Nat Genet. 1998 May;19(1):19–24. . PubMed PMID: 9590283.
  • Newkirk SJ, Lee S, Grandi FC, et al. Intact piRNA pathway prevents L1 mobilization in male meiosis. Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5635–E5644. PubMed PMID: 28630288; PubMed Central PMCID: PMCPMC5514719.
  • St John J, Quinn TW. Identification of novel CR1 subfamilies in an avian order with recently active elements. Mol Phylogenet Evol. 2008 Dec;49(3):1008–1014. . PubMed PMID: 18929670.
  • Guerrero-Bosagna C, Settles M, Lucker B, et al. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One. 2010;5(9). PubMed PMID: 20927350; PubMed Central PMCID: PMCPMC2948035. DOI:10.1371/journal.pone.0013100
  • Lin CL, Taggart AJ, Fairbrother WG. RNA structure in splicing: an evolutionary perspective. RNA Biol. 2016 Sep;13(9):766–771. . PubMed PMID: 27454491; PubMed Central PMCID: PMCPMC5014005.
  • Kim S, Choi D. New role of LTR-retrotransposons for emergence and expansion of disease-resistance genes and high-copy gene families in plants. BMB Rep. 2018 Feb;51(2):55–56. PubMed PMID: 29353598; PubMed Central PMCID: PMCPMC5836556.
  • Irwin DE. Sex chromosomes and speciation in birds and other ZW systems. Mol Ecol. 2018 Feb 14. PubMed PMID: 29443419. DOI:10.1111/mec.14537
  • Da Silva VH, Laine VN, Bosse M, et al. CNVs are associated with genomic architecture in a songbird. BMC Genomics. 2018 Mar 13;19(1):195. 10.1186/s12864-018-4577-1. PubMed PMID: 29703149.
  • Guerrero-Bosagna C. Evolution with no reason: a neutral view on epigenetic changes, genomic variability, and evolutionary novelty. Bioscience. 2017;67(5):469–476.
  • McQueen HA, Fantes J, Cross SH, et al. CpG islands of chicken are concentrated on microchromosomes. Nat Genet. 1996 Mar;12(3):321–324. PubMed PMID: 8589727.
  • Guerrero-Bosagna C, Jensen P. Optimized method for methylated DNA immuno-precipitation. MethodsX. 2015;2:432–439. PubMed PMID: 26740923; PubMed Central PMCID: PMCPMC4678308.
  • Andrew S. FASTQC. A quality control tool for high throughput sequence data. cited 2016 Nov 2. Available from: http://wwwbioinformaticsbabrahamacuk/projects/fastqc, 2010
  • Glaubitz JC, Casstevens TM, Lu F, et al. TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PLoS One. 2014;9(2):e90346. PubMed PMID: 24587335; PubMed Central PMCID: PMCPMC3938676.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012 Mar 04;9(4):357–359. . PubMed PMID: 22388286; PubMed Central PMCID: PMCPMC3322381.
  • Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078–2079. PubMed PMID: 19505943; PubMed Central PMCID: PMCPMC2723002.
  • Catchen JM, Amores A, Hohenlohe P, et al. Stacks: building and genotyping Loci de novo from short-read sequences. G3 (Bethesda). 2011 Aug;1(3):171–182. PubMed PMID: 22384329; PubMed Central PMCID: PMCPMC3276136.
  • Xie C, Tammi MT. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics. 2009 Mar 06;10:80.
  • Kawahara-Miki R, Sano S, Nunome M, et al. Next-generation sequencing reveals genomic features in the Japanese quail. Genomics. 2013 Jun;101(6):345–353. PubMed PMID: 23557672.
  • Zheng X, Levine D, Shen J, et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics. 2012 Dec 15;28(24):3326–3328. PubMed PMID: 23060615; PubMed Central PMCID: PMCPMC3519454.
  • Antao T, Lopes A, Lopes RJ, et al. LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics. 2008 Jul 28;9:323. PubMed PMID: 18662398; PubMed Central PMCID: PMCPMC2515854.
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010 Jan 01;26(1):139–140. . PubMed PMID: 19910308; PubMed Central PMCID: PMCPMC2796818.
  • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012 May;40(10):4288–4297. . PubMed PMID: 22287627; PubMed Central PMCID: PMCPMC3378882.
  • Lund SP, Nettleton D, McCarthy DJ, et al. Detecting differential expression in RNA-sequence data using quasi-likelihood with shrunken dispersion estimates. Stat Appl Genet Mol Biol. 2012 Oct 22;11(5). Chapter 8. PubMed PMID: 23104842.
  • Chen Y, Lun AT, Smyth GK. From reads to genes to pathways: differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Res. 2016;5:1438. PubMed PMID: 27508061; PubMed Central PMCID: PMCPMC4934518.
  • Robinson MD, Smyth GK. Moderated statistical tests for assessing differences in tag abundance. Bioinformatics. 2007 Nov 01;23(21):2881–2887. . PubMed PMID: 17881408.