1,429
Views
11
CrossRef citations to date
0
Altmetric
Research Paper

The histone lysine demethylase KDM7A is required for normal development and first cell lineage specification in porcine embryos

ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all
Pages 1088-1101 | Received 17 Mar 2019, Accepted 13 Jun 2019, Published online: 24 Jun 2019

References

  • Rivera RM, Ross JW. Epigenetics in fertilization and preimplantation embryo development. Prog Biophys Mol Biol. 2013 Dec;113(3):423–432. PubMed PMID: 23454467.
  • Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015 Sep;150(3):R109–20. PubMed PMID: 26031750; PubMed Central PMCID: PMCPMC4529766.
  • Cabot B, Cabot RA. Chromatin remodeling in mammalian embryos. Reproduction. 2018 Mar;155(3):R147–R158. PubMed PMID: 29339454.
  • Li L, Lu X, Dean J. The maternal to zygotic transition in mammals. Mol Aspects Med. 2013 Oct;34(5):919–938. PubMed PMID: 23352575; PubMed Central PMCID: PMCPMC3669654.
  • Eckersley-Maslin MA, Alda-Catalinas C, Reik W. Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nat Rev Mol Cell Biol. 2018 Apr 23. PubMed PMID: 29686419. DOI:10.1038/s41580-018-0008-z.
  • Ostrup O, Andersen IS, Collas P. Chromatin-linked determinants of zygotic genome activation. Cell Mol Life Sci. 2013 Apr;70(8):1425–1437. PubMed PMID: 22965566.
  • Bernstein BE, Mikkelsen TS, Xie X, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006 Apr 21;125(2):315–326. PubMed PMID: 16630819.
  • Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006 May 18;441(7091):349–353. PubMed PMID: 16625203.
  • Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature. 2001 Mar 1;410(6824):120–124. PubMed PMID: 11242054.
  • Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007 May 18;129(4):823–837. PubMed PMID: 17512414.
  • Ferrari KJ, Scelfo A, Jammula S, et al. Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. Mol Cell. 2014 Jan 9;53(1):49–62. PubMed PMID: 24289921.
  • Lepikhov K, Walter J. Differential dynamics of histone H3 methylation at positions K4 and K9 in the mouse zygote. BMC Dev Biol. 2004;4:1.
  • Sega MF, Lee K, Machaty Z, et al. Pronuclear stage porcine embryos do not possess a strict asymmetric distribution of lysine 9 dimethylation of histone H3 based solely on parental origin. Mol Reprod Dev. 2007;74(1):2–7.
  • Cao Z, Li Y, Chen Z, et al. Genome-wide dynamic profiling of histone methylation during nuclear transfer-mediated porcine somatic cell reprogramming. PLoS One. 2015;10(12):e0144897. PubMed PMID: 26683029; PubMed Central PMCID: PMCPMC4687693.
  • Gao Y, Hyttel P, Hall VJ. Regulation of H3K27me3 and H3K4me3 during early porcine embryonic development. Mol Reprod Dev. 2010 Jun;77(6):540–549. PubMed PMID: 20422712.
  • Ross PJ, Ragina NP, Rodriguez RM, et al. Polycomb gene expression and histone H3 lysine 27 trimethylation changes during bovine preimplantation development. Reproduction. 2008 Dec;136(6):777–785. PubMed PMID: 18784248.
  • Hyun K, Jeon J, Park K, et al. Writing, erasing and reading histone lysine methylations. Exp Mol Med. 2017 Apr 28;49(4):e324. PubMed PMID: 28450737.
  • Glanzner WG, Wachter A, Coutinho AR, et al. Altered expression of BRG1 and histone demethylases, and aberrant H3K4 methylation in less developmentally competent embryos at the time of embryonic genome activation. Mol Reprod Dev. 2017 Jan;84(1):19–29. PubMed PMID: 27879032.
  • Liu X, Wang C, Liu W, et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature. 2016 Sep 22;537(7621):558–562. PubMed PMID: 27626379.
  • Dahl JA, Jung I, Aanes H, et al. Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature. 2016 Sep 22;537(7621):548–552. PubMed PMID: 27626377.
  • Ancelin K, Syx L, Borensztein M, et al. Maternal LSD1/KDM1A is an essential regulator of chromatin and transcription landscapes during zygotic genome activation. Elife. 2016 Feb 2:5. PubMed PMID: 26836306; PubMed Central PMCID: PMCPMC4829419. DOI:10.7554/eLife.08851.
  • Bogliotti YS, Ross PJ. Mechanisms of histone H3 lysine 27 trimethylation remodeling during early mammalian development. Epigenetics. 2012 Sep;7(9):976–981. PubMed PMID: 22895114; PubMed Central PMCID: PMCPMC3515017.
  • Wang J, Zhang M, Zhang Y, et al. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development. Biol Reprod. 2010 Jan;82(1):105–111. PubMed PMID: 19696013.
  • Zhang Z, Zhai Y, Ma X, et al. Down-regulation of H3K4me3 by MM-102 facilitates epigenetic reprogramming of porcine somatic cell nuclear transfer embryos. Cell Physiol Biochem. 2018;45(4):1529–1540. PubMed PMID: 29466785.
  • Liu X, Wang Y, Gao Y, et al. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development. 2018 Feb 16;145(4):1-12. 10.1242/dev.158261. PubMed PMID: 29453221.
  • Hormanseder E, Simeone A, Allen GE, et al. H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell. 2017 Jul 6;21(1):135–143 e6. PubMed PMID: 28366589; PubMed Central PMCID: PMCPMC5505866.
  • Xie B, Zhang H, Wei R, et al. Histone H3 lysine 27 trimethylation acts as an epigenetic barrier in porcine nuclear reprogramming. Reproduction. 2016 Jan;151(1):9–16. PubMed PMID: 26515777.
  • Matoba S, Liu Y, Lu F, et al. Embryonic development following somatic cell nuclear transfer impeded by persisting histone methylation. Cell. 2014 Nov 6;159(4):884–895. PubMed PMID: 25417163; PubMed Central PMCID: PMCPMC4243038.
  • Chung N, Bogliotti YS, Ding W, et al. Active H3K27me3 demethylation by KDM6B is required for normal development of bovine preimplantation embryos. Epigenetics. 2017;12(12):1048–1056. PubMed PMID: 29160132; PubMed Central PMCID: PMCPMC5810760.
  • Glanzner WG, Rissi VB, de Macedo MP, et al. Histone 3 lysine 4, 9 and 27 demethylases expression profile in fertilized and cloned bovine and porcine embryos. Biol Reprod. 2018 Mar 8. PubMed PMID: 29528362. DOI:10.1093/biolre/ioy054.
  • Tsukada Y, Ishitani T, Nakayama KI. KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev. 2010 Mar 1;24(5):432–437. PubMed PMID: 20194436; PubMed Central PMCID: PMCPMC2827838.
  • Huang C, Chen J, Zhang T, et al. The dual histone demethylase KDM7A promotes neural induction in early chick embryos. Dev Dyn. 2010;239(12):3350–3357.
  • Huang C, Xiang Y, Wang Y, et al. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4. Cell Res. 2010 Feb;20(2):154–165. PubMed PMID: 20084082.
  • Huang Y, Kim JK, Do DV, et al. Stella modulates transcriptional and endogenous retrovirus programs during maternal-to-zygotic transition. Elife. 2017 Mar 21;6. PubMed PMID: 28323615; PubMed Central PMCID: PMCPMC5404928. DOI:10.7554/eLife.22345.
  • Dean W, Santos F, Stojkovic M, et al. Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A. 2001 Nov 20;98(24):13734–13738. PubMed PMID: 11717434; PubMed Central PMCID: PMCPMC61110.
  • Morgan HD, Santos F, Green K, et al. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005 Apr 15;14(1):R47–58. PubMed PMID: 15809273.
  • Paul S, Knott JG. Epigenetic control of cell fate in mouse blastocysts: the role of covalent histone modifications and chromatin remodeling. Mol Reprod Dev. 2014 Feb;81(2):171–182. PubMed PMID: 23893501; PubMed Central PMCID: PMCPMC4276566.
  • Huang J, Zhang H, Wang X, et al. Impairment of preimplantation porcine embryo development by histone demethylase KDM5B knockdown through disturbance of bivalent H3K4me3-H3K27me3 modifications. Biol Reprod. 2015 Mar;92(3):72. PubMed PMID: 25609834; PubMed Central PMCID: PMCPMC4367965.
  • van der Heijden GW, Dieker JW, Derijck AA, et al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote. Mech Dev. 2005 Sep;122(9):1008–1022. PubMed PMID: 15922569.
  • Liu H, Kim JM, Aoki F. Regulation of histone H3 lysine 9 methylation in oocytes and early pre-implantation embryos. Development. 2004 May;131(10):2269–2280. PubMed PMID: 15102709.
  • Erhardt S, Su IH, Schneider R, et al. Consequences of the depletion of zygotic and embryonic enhancer of zeste 2 during preimplantation mouse development. Development. 2003 Sep;130(18):4235–4248. PubMed PMID: 12900441.
  • Shen H, Xu W, Lan F. Histone lysine demethylases in mammalian embryonic development. Exp Mol Med. 2017 Apr 28;49(4):e325. PubMed PMID: 28450736.
  • Loh YH, Zhang W, Chen X, et al. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007 Oct 15;21(20):2545–2557. PubMed PMID: 17938240; PubMed Central PMCID: PMCPMC2000320.
  • Magnani L, Johnson CM, Cabot RA. Expression of eukaryotic elongation initiation factor 1A differentially marks zygotic genome activation in biparental and parthenogenetic porcine embryos and correlates with in vitro developmental potential. Reprod Fertil Dev. 2008;20(7):818–825. PubMed PMID: 18842184.
  • Sakaue M, Ohta H, Kumaki Y, et al. DNA methylation is dispensable for the growth and survival of the extraembryonic lineages. Curr Biol. 2010 Aug 24;20(16):1452–1457. PubMed PMID: 20637626.
  • Yuan P, Han J, Guo G, et al. Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells. Genes Dev. 2009 Nov 1;23(21):2507–2520. PubMed PMID: 19884257; PubMed Central PMCID: PMCPMC2779752.
  • Yeap LS, Hayashi K, Surani MA. ERG-associated protein with SET domain (ESET)-Oct4 interaction regulates pluripotency and represses the trophectoderm lineage. Epigenetics Chromatin. 2009 Oct 7;2(1):12. PubMed PMID: 19811652; PubMed Central PMCID: PMCPMC2763847.
  • Alder O, Lavial F, Helness A, et al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment. Development. 2010 Aug 1;137(15):2483–2492. PubMed PMID: 20573702; PubMed Central PMCID: PMCPMC2927698.
  • Marinho LSR, Rissi VB, Lindquist AG, et al. Acetylation and methylation profiles of H3K27 in porcine embryos cultured in vitro. Zygote. 2017;25(05):575–582.
  • Park KE, Magnani L, Cabot RA. Differential remodeling of mono- and trimethylated H3K27 during porcine embryo development. Mol Reprod Dev. 2009 Nov;76(11):1033–1042. PubMed PMID: 19536841.
  • Strumpf D, Mao CA, Yamanaka Y, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005 May;132(9):2093–2102. PubMed PMID: 15788452.
  • Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003 May 30;113(5):631–642. PubMed PMID: 12787504.
  • Kuijk EW, Du Puy L, Van Tol HT, et al. Differences in early lineage segregation between mammals. Dev Dyn. 2008 Apr;237(4):918–927. PubMed PMID: 18330925.
  • Liu S, Bou G, Sun R, et al. Sox2 is the faithful marker for pluripotency in pig: evidence from embryonic studies. Dev Dyn. 2015 Apr;244(4):619–627. PubMed PMID: 25619399.
  • Hall VJ, Christensen J, Gao Y, et al. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development. Dev Dyn. 2009 Aug;238(8):2014–2024. PubMed PMID: 19618464.
  • Simmet K, Zakhartchenko V, Philippou-Massier J, et al. OCT4/POU5F1 is required for NANOG expression in bovine blastocysts. Proc Natl Acad Sci U S A. 2018 Mar 13;115(11):2770–2775. PubMed PMID: 29483258; PubMed Central PMCID: PMCPMC5856541.
  • Zhang L, Luo Y-B, Bou G, et al. Overexpression nanog activates pluripotent genes in porcine fetal fibroblasts and nuclear transfer embryos. Anat Rec. 2011;294(11):1809–1817.
  • Abeydeera LR, Day BN. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol Reprod. 1997 Oct;57(4):729–734. PubMed PMID: 9314573.
  • Yoshioka K, Suzuki C, Tanaka A, et al. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod. 2002 Jan;66(1):112–119. PubMed PMID: 11751272.
  • Che L, Lalonde A, Bordignon V. Chemical activation of parthenogenetic and nuclear transfer porcine oocytes using ionomycin and strontium chloride. Theriogenology. 2007 Apr 15;67(7):1297–1304. PubMed PMID: 17350088.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.