4,444
Views
18
CrossRef citations to date
0
Altmetric
Research Paper

Music-listening regulates human microRNA expression

, , , , & ORCID Icon
Pages 554-566 | Received 01 Mar 2020, Accepted 18 Jun 2020, Published online: 06 Sep 2020

References

  • Tramo MJ. Biology and music. Music of the hemispheres. Science. 2001;291(5501):54–56.
  • Peretz I, Zatorre RJ. Brain organization for music processing. Annu Rev Psychol. 2005;56:89–114.
  • Bradley W, Vines BW, Krumhansl CL, et al. Cross-modal interactions in the perception of musical performance. Cognition. 2006;101(1):80–113.
  • Koelsch S. Brain correlates of music-evoked emotions. Nat Rev Neurosci. 2014;15:170–180.
  • Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci USA. 2001;98:11818–11823.
  • Menon V, Levitin DJ. The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage. 2005;28:175–184.
  • Salimpoor VN, Benovoy M, Larcher K, et al. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci. 2011;14:257–262.
  • Karageorghis CI, Terry PC, Lane AM, et al. The BASES Expert Statement on use of music in exercise. J Sports Sci. 2012;30:953–956.
  • Sihvonen AJ, Särkämö T, Leo V, et al. Music-based interventions in neurological rehabilitation. Lancet Neurol. 2017;16:648–660.
  • Fineberg SK, Kosik KS, Davidson BL. MicroRNAs potentiate neural development. Neuron. 2009;64:303–309.
  • Cohen JE, Lee PR, Chen S, et al. MicroRNA regulation of homeostatic synaptic plasticity. Proc Natl Acad Sci USA. 2011;108:11650–11655.
  • Patel M, Hu BH. MicroRNAs in inner ear biology and pathogenesis. Hearing Res. 2012;287:6–14.
  • Gunaratne PH, Lin Y-C, Benham AL, et al. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain. BMC Genomics. 2011;12:277.
  • Louder MIM, Hauber ME, Balakrishnan CN. Early social experience alters transcriptomic responses to species-specific song stimuli in female songbirds. Behav Brain Res. 2018;347:69–76.
  • Kanduri C, Raijas P, Ahvenainen M, et al. The effect of listening to music on human transcriptome. PeerJ. 2015;3:e830.
  • Kanduri C, Kuusi T, Ahvenainen M, et al. The effect of music performance on the transcriptome of professional musicians. Sci Rep. 2015;5:9506.
  • Chou C-H, Shrestha S, Yang C-D, et al. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Res. 2018;46:D296–D302.
  • Agarwal V, Bell GW, Nam J-W, et al. Predicting effective microRNA target sites in mammalian mRNAs. eLife. 2015;4. DOI:10.7554/eLife.05005
  • Larson TA, Lent KL, Bammler TK, et al. Network analysis of microRNA and mRNA seasonal dynamics in a highly plastic sensorimotor neural circuit. BMC Genomics. 2015;16:905.
  • Clovis YM, Enard W, Marinaro F, et al. Convergent repression of Foxp2 3ʹUTR by miR-9 and miR-132 in embryonic mouse neocortex: implications for radial migration of neurons. Development. 2012;139:3332–3342.
  • Teramitsu I, Poopatanapong A, Torrisi S, et al. Striatal FoxP2 is actively regulated during songbird sensorimotor learning. PLoS ONE. 2010;5:e8548.
  • Lin Y-C, Balakrishnan CN, Clayton DF. Functional genomic analysis and neuroanatomical localization of miR-2954, a song-responsive sex-linked microRNA in the zebra finch. Front Neurosci. 2014;8:409.
  • Whitney O, Pfenning AR, Howard JT, et al. Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science (New York, NY). 2014;346:1256780.
  • Pang X, Hogan EM, Casserly A, et al. Dicer expression is essential for adult midbrain dopaminergic neuron maintenance and survival. Mol Cell Neurosci. 2014;58:22–28.
  • Rittman T, Rubinov M, Vértes PE, et al. Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy. Neurobiol Aging. 2016;48:153–160.
  • Smith PY, Hernandez-Rapp J, Jolivette F, et al. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum Mol Genet. 2015;24:6721–6735.
  • Nudelman AS, DiRocco DP, Lambert TJ, et al. Neuronal activity rapidly induces transcription of the CREB‐regulated microRNA‐132, in vivo. Hippocampus. 2010;20:492–498.
  • Oikkonen J, Onkamo P, Järvelä I, et al. Convergent evidence for the molecular basis of musical traits. Sci Rep. 2016;6:39707.
  • Tao X, Finkbeiner S, Arnold DB, et al. Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron. 1998;20:709–726.
  • Magill ST, Cambronne XA, Luikart BW, et al. microRNA-132 regulates dendritic growth and arborization of newborn neurons in the adult hippocampus. Proc Natl Acad Sci USA. 2010;107:20382–20387.
  • Sakaguchi H, Wada K, Maekawa M, et al. Song-induced phosphorylation of cAMP response element-binding protein in the songbird brain. J Neurosci. 1999;19:3973–3981.
  • Wibrand K, Pai B, Siripornmongcolchai T, et al. MicroRNA regulation of the synaptic plasticity-related gene Arc. PloS One. 2012;7:e41688.
  • Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hearing Res. 2014;308:109–121.
  • Xing Y, Chen W, Wang Y, et al. Music exposure improves spatial cognition by enhancing the BDNF level of dorsal hippocampal subregions in the developing rats. Brain Res Bull. 2016;121:131–137.
  • Wada K, Howard JT, McConnell P, et al. A molecular neuroethological approach for identifying and characterizing a cascade of behaviorally regulated genes. Proc Nat Acad Sci USA. 2006;103:15212–15217.
  • Kaczmarek L, Nikołajew E. C-fos protooncogene expression and neuronal plasticity. Acta Neurobiol Exp. 1990;50:173–179.
  • Sun -Z-Z, Lv Z-Y, Tian W-J, et al. MicroRNA-132 protects hippocampal neurons against oxygen-glucose deprivation-induced apoptosis. Int J Immunopathol Pharmacol. 2017;30:253–263.
  • Hartmann A, Hunot S, Michel PP, et al. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Nat Acad Sci USA. 2000;97:2875–2880.
  • Ryan B, Logan BJ, Abraham WC, et al. MicroRNAs, miR-23a-3p and miR-151-3p, Are regulated in dentate gyrus neuropil following induction of long-term potentiation in vivo. PloS One. 2017;12:e0170407.
  • Aid-Pavlidis T, Pavlidis P, Timmusk T. Meta-coexpression conservation analysis of microarray data: A “subset” approach provides insight into brain-derived neurotrophic factor regulation. BMC Genomics. 2009;10:420.
  • Kudryavtseva NN, Bondar NP, Boyarskikh UA, et al. Snca and Bdnf gene expression in the VTA and raphe nuclei of midbrain in chronically victorious and defeated male mice. PloS One. 2010;5:e14089.
  • Kohno R, Sawada H, Kawamoto Y, et al. BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochem Biophys Res Comm. 2004;318:113–118.
  • Oikkonen J, Huang Y, Onkamo P, et al. A genome-wide linkage and association study of musical aptitude identifies loci containing genes related to inner ear development and neurocognitive functions. Mol Psychiatry. 2015;20:275–282.
  • Park H, Lee S, Kim H-J, et al. Comprehensive genomic analyses associate UGT8 variants with musical ability in a Mongolian population. J Med Genet. 2012;49:747–752.
  • Kumar M, Lu Z, AaL T, et al. Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene. 2011;30:843–853.
  • Brett JO, Renault VM, Rafalski VA, et al. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging (Albany NY). 2011;3:108–124.
  • Liu X, Kanduri C, Oikkonen J, et al. Detecting signatures of positive selection associated with musical aptitude in the human genome. Sci Rep. 2016;6:21198.
  • Heston JB, White SA. Behavior-linked FoxP2 regulation enables zebra finch vocal learning. J Neurosci. 2015;35:2885–2894.
  • Lin S-T, Huang Y, Zhang L, et al. MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci USA. 2013;110:17468–17473.
  • Thomas GM, Huganir RL. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci. 2004;5:173–183.
  • Nair VD, Olanow CW, Sealfon SC. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines. Biochem J. 2003;373:25–32.
  • Tan H-Y, Nicodemus KK, Chen Q, et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest. 2008;118:2200–2208.
  • Pannese A, Grandjean D, Frühholz S. Amygdala and auditory cortex exhibit distinct sensitivity to relevant acoustic features of auditory emotions. Cortex. 2016;85:116–125.
  • Zhao J, Lee M-C, Momin A, et al. Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci. 2010;30:10860–10871.
  • Friedman LM, Dror AA, Mor E, et al. MicroRNAs are essential for development and function of inner ear hair cells in vertebrates. Proc Natl Acad Sci USA. 2009;106:7915–7920.
  • Chmielarz P, Konovalova J, Najam SS, et al. Dicer and microRNAs protect adult dopamine neurons. Cell Death Dis. 2017;8:e2813.
  • Moraes MM, Rabelo PCR, Pinto VA, et al. Auditory stimulation by exposure to melodic music increases dopamine and serotonin activities in rat forebrain areas linked to reward and motor control. Neurosci Lett. 2018;673:73–78.
  • Liang Y, Ridzon D, Wong L, et al. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166.
  • Liew -C-C, Ma J, Tang H-C, et al. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J Lab Clin Med. 2006;147:126–132.
  • Rigoulot S, Pell MD, Armony JL. Time course of the influence of musical expertise on the processing of vocal and musical sounds. Neuroscience. 2015;290:175–184.
  • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.
  • Anders S, Pyl PT, Huber W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–169.
  • Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
  • Zhou X, Lindsay H, Robinson MD. Robustly detecting differential expression in RNA sequencing data using observation weights. Nucleic Acids Res. 2014;42:e91.
  • Schurch NJ, Schofield P, Gierliński M, et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA. 2016;22:839–851.
  • Chilton WL, Marques FZ, West J, et al. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PloS One. 2014;9:e92088.
  • Tonevitsky AG, Maltseva DV, Abbasi A, et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 2013;13:9.
  • Li J, Han X, Wan Y, et al. TAM 2.0: tool for MicroRNA set analysis. Nucleic Acids Res. 2018;46:W180–W185.
  • Bleazard T, Lamb JA, Griffiths-Jones S. Bias in microRNA functional enrichment analysis. Bioinformatics. 2015;31:1592–1598.
  • Godard P, van Eyll J. Pathway analysis from lists of microRNAs: common pitfalls and alternative strategy. Nucleic Acids Res. 2015;43:3490–3497.
  • Tong Z, Cui Q, Wang J, et al. TransmiR v2.0: an updated transcription factor-microRNA regulation database. Nucleic Acids Res. 2019;47:D253–D258.
  • Pfenning AR, Hara E, Whitney O, et al. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science (New York, NY). 2014;346:1256846.
  • Griffiths-Jones S, Grocock RJ, van Dongen S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140–144.
  • Shimoyama M, De Pons J, Hayman GT, et al. The rat genome database 2015: genomic, phenotypic and environmental variations and disease. Nucleic Acids Res. 2015;43:D743–750.
  • Dweep H, Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697.
  • Hinske LC, França GS, Torres HAM, et al. miRIAD-integrating microRNA inter- and intragenic data. Database: J Biol Databases and Curation. 2014;2014.
  • Kalari KR, Thompson KJ, Nair AA, et al. BBBomics-human blood brain barrier transcriptomics hub. Front Neurosci. 2016;10:71.
  • Shi Z, Luo G, Fu L, et al. miR-9 and miR-140-5p target FoxP2 and are regulated as a function of the social context of singing behavior in zebra finches. J Neurosci. 2013;33:16510–16521.
  • Hilliard AT, Miller JE, Fraley ER, et al. Molecular microcircuitry underlies functional specification in a basal ganglia circuit dedicated to vocal learning. Neuron. 2012;73:537–552.
  • Otaegi G, Pollock A, Hong J, et al. MicroRNA miR-9 modifies motor neuron columns by a tuning regulation of FoxP1 levels in developing spinal cords. J Neurosci. 2011;31:809–818.
  • Li C, Zhang K, Chen J, et al. MicroRNAs as regulators and mediators of forkhead box transcription factors function in human cancers. Oncotarget. 2017;8:12433–12450.
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–D368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.