3,706
Views
14
CrossRef citations to date
0
Altmetric
Research Paper

HIV-1 Tat and cocaine impact mitochondrial epigenetics: effects on DNA methylation

, , ORCID Icon & ORCID Icon
Pages 980-999 | Received 02 Jun 2020, Accepted 02 Oct 2020, Published online: 24 Oct 2020

References

  • Hu XL, Wang Y, Shen Q. Epigenetic control on cell fate choice in neural stem cells. Protein Cell. 2012;3:278–290.
  • Goldberg AD, Allis CD, Bernstein E. Epigenetics: A landscape takes shape. Cell. 2007;128(4):635–638.
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23–38.
  • Singh RP, Shiue K, Schomberg D, et al. Cellular epigeneti epigenetic modifications of neural stem cell differentiation. Cell Transplant. 2009;18:1197–1211.
  • Jiang D, Zhang Y, Hart RP, et al. Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency. Brain. [Internet] 2015; 138:3520–3536. [cited 2020 Jul 24]. Available from: https://academic.oup.com/brain/article-abstract/138/12/3520/413106
  • Troyer RM, Collins KR, Abraha A, et al. Changes in human immunodeficiency virus type 1 fitness and genetic diversity during disease progression. J Virol. [Internet] 2005 ; 79: 9006–9018. [cited 2020 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15994794
  • Valcour V, Sithinamsuwan P, Letendre S, et al. Pathogenesis of HIV in the central nervous system. Curr HIV/AIDS Rep. 2011;8:54–61.
  • Zhang X, Justice AC, Hu Y, et al. Epigenome-wide differential DNA methylation between HIV-infected and uninfected individuals. Epigenetics. 2016;11:750–760.
  • Samikkannu T, Rao KVK, Ding H, et al. Immunopathogenesis of HIV infection in cocaine users: role of arachidonic acid. PLoS One. [Internet] 2014 ; 9:e106348. [cited 2020 Feb 12]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25171226
  • Minagar A, Shapshak P, Fujimura R, et al., The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis [Internet]. J Neurol Sci 2002;202:13–23. cited 2020 Feb 19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12220687
  • Dayton AI, Sodroski JG, Rosen CA, et al. The trans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell. 1986;44:941–947.
  • Fields J, Dumaop W, Crews L, et al. Mechanisms of HIV-1 Tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res. 2015;13(1):43–54.
  • Ivanov AV, Valuev-Elliston VT, Ivanova ON, et al. Oxidative stress during HIV infection: mechanisms and Consequences. Oxid Med Cell Longev. 2016;2016:8910396.
  • Zhao X, Fan Y, Vann PH, et al. 1 Tat expression in the brain led to neurobehavioral, pathological, and epigenetic changes reminiscent of accelerated aging. 2019; 11:1–15.
  • Periyasamy P, Thangaraj A, Guo ML, et al. Epigenetic promoter DNA methylation of mir-124 promotes HIV-1 tat-mediated microglial activation via MECP2-STAT3 axis. J Neurosci. 2018;38:5367–5383.
  • Natarajaseenivasan K, Cotto B, Shanmughapriya S, et al. Astrocytic metabolic switch is a novel etiology for Cocaine and HIV-1 Tat-mediated neurotoxicity article. Cell Death Dis. 2018;9(4):415.
  • Lecoeur H, Borgne-Sanchez A, Chaloin O, et al. HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell Death Dis. 2012;3(3): e282.
  • Norman JP, Perry SW, Reynolds HM, et al. HIV-1 Tat activates neuronal ryanodine receptors with rapid induction of the unfolded protein response and mitochondrial hyperpolarization. PLoS One. 2008;3(11):e3731.
  • Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–531.
  • Kasahara A, Scorrano L. Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol. 2014;24:761–770.
  • El-Amine R, Germini D, Zakharova VV, et al. HIV-1 Tat protein induces DNA damage in human peripheral blood B-lymphocytes via mitochondrial ROS production. Redox Biol. 2018;15:97–108.
  • Rodríguez-Mora S, Mateos E, Moran M, et al. Intracellular expression of Tat alters mitochondrial functions in T cells: A potential mechanism to understand mitochondrial damage during HIV-1 replication. Retrovirology. 2015;12; 12:78.
  • Turnbull HE, Lax NZ, Diodato D, et al. The mitochondrial brain: from mitochondrial genome to neurodegeneration [Internet]. Biochim Biophys Acta - Mol Basis Dis. 2010;1802:111–121. [cited 2020 Jul 24]. Available from: /pmc/articles/PMC2795853/?report=abstract
  • Jaeger VK, Lebrecht D, Nicholson AG, et al. Mitochondrial DNA mutations and respiratory chain dysfunction in idiopathic and connective tissue disease-related lung fibrosis. Sci Rep. 2019;9:1–8.
  • Dhillon NK, Peng F, Bokhari S, et al. Cocaine-mediated alteration in tight junction protein expression and modulation of CCL2/CCR2 axis across the blood-brain barrier: implications for HIV-dementia. J NeuroImmune Pharmacol. [Internet] 2008 ; 3 52–56. [cited 2020 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18046654
  • Gandhi N, Saiyed ZM, Napuri J, et al. Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: implications for HIV-1associated neurocognitive disorder. J Neurovirol. [Internet] 2010 ; 16: 295–306. [cited 2020 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20624003
  • Ersche KD, Jones PS, Williams GB, et al. Cocaine dependence: A fast-track for brain ageing. Mol Psychiatry. 2013;18:134–135.
  • Vonmoos M, Hulka LM, Preller KH, et al. Cognitive impairment in cocaine users is drug-induced but partially reversible: evidence from a longitudinal study. Neuropsychopharmacology. 2014;39:2200–2210.
  • Elachouri G, Vidoni S, Zanna C, et al. OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. Genome Res. 2011;21:12–20.
  • Rouzier C, Bannwarth S, Chaussenot A, et al. The MFN2 gene is responsible for mitochondrial DNA instability and optic atrophy ‘plus’ phenotype. Brain [Internet]. 2011;135:23–34.
  • Samikkannu T, Atluri VSR, Nair MPN. HIV and cocaine impact glial metabolism: energy sensor AMP-activated protein kinase role in mitochondrial biogenesis and epigenetic remodeling. Sci Rep. 2016;6:1–11.
  • Cunha-Oliveira T, Silva L, Silva AM, et al. Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicol Lett. [Internet] 2013 ; 219: 298–306. [cited 2020 Apr 6]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23542814
  • US NIH. How does drug abuse affect the HIV epidemic? | National Institute on Drug Abuse (NIDA) [Internet]. 2012. [cited 2020 Apr 6]. Available from: https://www.drugabuse.gov/publications/research-reports/hivaids/how-does-drug-abuse-affect-hiv-epidemic
  • Samikkannu T, Agudelo M, Gandhi N, et al. Human immunodeficiency virus type 1 clade B and C gp120 differentially induce neurotoxin arachidonic acid in human astrocytes: implications for neuroAIDS. J Neurovirol. 2011;17:230–238.
  • Baum MK, Rafie C, Lai S, et al. Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J Acquir Immune Defic Syndr. 2009;50:93–99.
  • Samikkannu T, Rao KVK, Arias AY, et al. HIV infection and drugs of abuse: role of acute phase proteins. J Neuroinflammation. 2013;10:113.
  • Desplats P, Dumaop W, Cronin P, et al. Epigenetic alterations in the brain associated with HIV-1 infection and methamphetamine dependence. PLoS One. 2014;9(7):e102555.
  • Anier K, Malinovskaja K, Aonurm-Helm A, et al. DNA methylation regulates cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology. 2010;35:2450–2461.
  • Carouge D, Host L, Aunis D, et al. CDKL5 is a brain MeCP2 target gene regulated by DNA methylation. Neurobiol Dis. 2010;38:414–424.
  • Kim BO, Liu Y, Ruan Y, et al. Neuropathologies in transgenic mice expressing human immunodeficiency virus type 1 Tat protein under the regulation of the astrocyte-specific glial fibrillary acidic protein promoter and doxycycline. Am J Pathol. 2003;162:1693–1707.
  • Paris JJ, Singh HD, Ganno ML, et al. Anxiety-like behavior of mice produced by conditional central expression of the HIV-1 regulatory protein, Tat. Psychopharmacology (Berl). 2014;231:2349–2360.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinforma Appl Note. [Internet] 2011 ; 27 1571–1572. [cited 2020 Apr 13]. Available from: www.bioinformatics.bbsrc.ac.uk/projects/bismark/
  • Coppedè F, Stoccoro A. Mitoepigenetics and neurodegenerative diseases. Front Endocrinol (Lausanne). 2019;10:86.
  • Shock LS, Thakkar PV, Peterson EJ, et al. DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci U S A. [Internet] 2011. ; 108 3630–3635. [cited 2020 Mar 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21321201
  • Wong M, Gertz B, Chestnut BA, et al. Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS. Front Cell Neurosci. [Internet] 2013 ; 7:279. [cited 2020 Mar 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24399935
  • Bellizzi D, D’aquila P, Scafone T, et al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res. [Internet] 2013 ; 20 537–547. [cited 2020 Mar 4]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23804556
  • Patil V, Cuenin C, Chung F, et al. Human mitochondrial DNA is extensively methylated in a non-CpG context. Nucleic Acids Res. [Internet] 2019 ; 47:10072–10085. [cited 2020 Mar 4]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/
  • Jin B, Robertson KD DNA methyltransferases, DNA damage repair, and cancer. In: Advances in experimental medicine and biology. NIH Public Access; 2013. 3–29.
  • Rasmussen KD, Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–750.
  • Sun H, Wang Xeditors. Mitochondrial DNA and diseases [Internet]. Singapore: Springer Singapore. 2017. cited 2020 Apr 16. Available from: http://link.springer.com/https://doi.org/10.1007/978–981–10–6674–0
  • Brandon MC, Lott MT, Nguyen KC, et al. MITOMAP: a human mitochondrial genome database–2004 update. Nucleic Acids Res. [Internet] 2005 ; 33:D611–3. [cited 2020 Apr 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15608272
  • Masser DR, Stanford DR, Freeman WM. Targeted DNA methylation analysis by next-generation sequencing. J Vis Exp. 2015.
  • Gray F, Adle-Biassette H, Chretien F, et al. Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol [Internet] ; 20(4):146–155. [cited 2020 May 13]. Available from:http://www.ncbi.nlm.nih.gov/pubmed/11495003
  • Churchill MJ, Cowley DJ, Wesselingh SL, et al. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research. J Neurovirol. [Internet] 2015 ; 21: 290–300. [cited 2020 May 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25060300
  • Gray LR, Turville SG, HItchen TL, et al. HIV-1 entry and trans-infection of astrocytes involves CD81 vesicles. PLoS One. [Internet] 2014 ; 9:e90620. [cited 2020 May 17]. Available from: https://dx.plos.org/https://doi.org/10.1371/journal.pone.0090620
  • Churchill MJ, Wesselingh SL, Cowley D, et al. Extensive astrocyte infection is prominent in human immunodeficiency virus-associated dementia. Ann Neurol. [Internet] 2009 ; 66 253–258. [cited 2020 May 17]. Available from: http://doi.wiley.com/https://doi.org/10.1002/ana.21697
  • Vignoli AL, Martini I, Haglid KG, et al. Neuronal glycolytic pathway impairment induced by HIV envelope glycoprotein gp120. Mol Cell Biochem. [Internet] 2000 ; 215:73–80. [cited 2020 May 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11204458
  • Lunnon K, Ibrahima Z, Proitsi P, et al. Mitochondrial dysfunction and immune activation are detectable in early alzheimer’s disease blood. J Alzheimer’s Dis. [Internet] 2012 ; 30 685–710. [cited 2020 May 5]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22466004
  • Sadri-Vakili G. Cocaine triggers epigenetic alterations in the corticostriatal circuit. Brain Res. 2015;1628:50–59.
  • Breiter HC, Gollub RL, Weisskoff RM, et al. Acute effects of cocaine on human brain activity and emotion. Neuron. 1997;19:591–611.
  • Hategan A, Bianchet MA, Steiner J, et al. HIV Tat protein and amyloid-β peptide form multifibrillar structures that cause neurotoxicity. Nat Struct Mol Biol. [Internet] 2017 ; 24:379–386. [cited 2020 May 13]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28218748
  • Miro O, Lopez S, Martinez E, et al. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of hiv-infected patients who were never treated with antiretrovirals. Clin Infect Dis. [Internet] 2004 ; 39:710–716. [cited 2020 May 11]. Available from: https://academic.oup.com/cid/article-lookup/doi/https://doi.org/10.1086/423176
  • Graziani M, Sarti P, Arese M, et al. Cardiovascular mitochondrial dysfunction induced by cocaine: biomarkers and possible beneficial effects of modulators of oxidative stress. 2017 [cited 2020 May 11]. DOI: https://doi.org/10.1155/2017/3034245
  • Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: role and functions in brain pathologies. Front Pharmacol. 2019;10:1114.
  • Buch S, Yao H, Guo M, et al. Cocaine and HIV-1 interplay in CNS: cellular and molecular mechanisms. Curr HIV Res. 2012;10:425–428.
  • Zhao X, Fan Y, Vann PH, et al. Long-term HIV-1 Tat expression in the brain led to neurobehavioral, pathological, and epigenetic changes reminiscent of accelerated aging. Aging Dis. [Internet] 2020 ; 11:93. [cited 2020 Mar 4]. Available from: http://www.aginganddisease.org/EN/https://doi.org/10.14336/AD.2019.0323
  • Turek-Plewa J, Jagodziński PP. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005;10:631–647.
  • Tahiliani M, Koh KP, Shen Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. [Internet] 2009 ; 324 930–935. [cited 2020 Apr 3]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19372391
  • He YF, Li BZ, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science. 2011;333:1303–1307.
  • Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 2011;333:1300–1303.
  • Felsenfeld G, Groudine M. Controlling the double helix. Nature. 2003;421:448–453.
  • Hahn MA, Szabó PE, Pfeifer GP. 5-hydroxymethylcytosine: A stable or transient DNA modification? Genomics. 2014;104:314–323.
  • Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron. 2007;53:857–869.
  • Liu L, Van Groen T, Kadish I, et al. Insufficient DNA methylation affects healthy aging and promotes age-related health problems. Clin Epigenetics. 2011;2:349–360.
  • Mutze K, Langer R, Schumacher F, et al. DNA methyltransferase 1 as a predictive biomarker and potential therapeutic target for chemotherapy in gastric cancer. Eur J Cancer. [Internet] 2011 ; 47:1817–1825. [cited 2020 Apr 16]. Available from. ;:. . : http://www.ncbi.nlm.nih.gov/pubmed/21458988
  • Pfeifer GP, Tang MS, Denissenko MF. Mutation hotspots and DNA methylation. Curr Top Microbiol Immunol. 2000;249:1–19.
  • Wang SC, Oeize B, Schumacher A. Age-specific epigenetic drift in late-ons,et Alzheimer’s disease. PLoS One. [Internet] 2008 ; 3:e2698. [cited 2020 Apr 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18628954
  • Saini SK, Mangalhara KC, Prakasam G, et al. DNA Methyltransferase1 (DNMT1) Isoform3 methylates mitochondrial genome and modulates its biology. Sci Rep. [Internet] 2017 ; 7. [cited 2020 Apr 16]. Available from: www.nature.com/scientificreports
  • Samikkannu T, Atluri VSR, Nair MPN. HIV and cocaine impact glial metabolism: energy sensor AMP-activated protein kinase role in mitochondrial biogenesis and epigenetic remodeling. Sci Rep. 2016;6:31784.
  • Barrachina M, Ferrer I. DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol. 2009;68:880–891.
  • Sung HY, Choi EN, Jo S A, et al. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line. Biochem Biophys Res Commun. [Internet] 2011 ; 414 700–705. [cited 2020 Apr 16]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22001921
  • Pion M, Jaramillo-Ruiz D, Martínez A, et al. HIV infection of human regulatory T cells downregulates Foxp3 expression by increasing DNMT3b levels and DNA methylation in the FOXP3 gene. AIDS. [Internet] 2013 ; 27: 2019–2029. [cited 2020 Mar 4]. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00002030-201308240–00002
  • Gao D, Zhu B, Sun H, et al. Mitochondrial DNA methylation and related disease. In: Advances in experimental medicine and biology. Springer New York LLC; 2017;1038:117–132.
  • Lee C, Zeng J, Drew BG, et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 2015;21:443–454.
  • Lakhani CM. Neuronal brain region-specific DNA methylation and chromatin accessibility are associated with neuropsychiatric trait heritability. Physiol Behav. 2019;176:139–148.
  • Chomyn A, Mariottini P, Cleeter MWJ, et al. Six unidentified reading frames of human mitochondrial DNA encode components of the respiratory-chain NADH dehydrogenase. Nature. 1985;314:592–597.
  • Blanch M, Mosquera JL, Ansoleaga B, et al. Altered mitochondrial DNA methylation pattern in Alzheimer disease-related pathology and in Parkinson disease. Am J Pathol. 2016;186:385–397.
  • McKenzie M, Duchen MR. Impaired cellular bioenergetics causes mitochondrial calcium handling defects in MT-ND5 mutant cybrids. PLoS One. 2016;11:1–12.