1,499
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

The effect of experimental lead pollution on DNA methylation in a wild bird population

ORCID Icon, , &
Pages 625-641 | Received 11 Feb 2021, Accepted 11 Jun 2021, Published online: 09 Aug 2021

References

  • Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol. 2010;19(7):1283–1295.
  • Rosenfeld CS. Animal models to study environmental epigenetics. Biol Reprod. 2010;82(3):473–488.
  • Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–222.
  • Faulk C, Dolinoy DC. Timing is everything The when and how of environmentally induced changes in the epigenome of animals. Epigenetics. 2011;6(7):791–797.
  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.
  • Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;13(44):17046–17049.
  • Weaver ICG, Cervoni N, Champagne FA, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7(8):847–854.
  • Cheng TF, Choudhuri S, Muldoon-Jacobs K. Epigenetic targets of some toxicologically relevant metals: a review of the literature. J Appl Toxicol. 2012;32(9):643–653.
  • Head JA. Patterns of DNA methylation in animals: an ecotoxicological perspective. Integr Comp Biol. 2014;54(1):77–86.
  • Head JA, Dolinoy DC, Basu N. Epigenetics for ecotoxicologists. Environ toxicol chem/SETAC. 2012;31(2):221–227.
  • Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet. 2014;5:201.
  • Ruiz-Hernandez A, Kuo CC, Rentero-Garrido P, et al. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clin Epigenetics. 2015;7(1):24.
  • Bossdorf O, Richards CL, Pigliucci M. Epigenetics for ecologists. Ecol Lett. 2008;11(2):106–115.
  • Liebl AL, Schrey AW, Richards CL, et al. Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol. 2013;53(2):351–358.
  • Riyahi S, Sanchez-Delgado M, Calafell F, et al. Combined epigenetic and intraspecific variation of the DRD4 and SERT genes influence novelty seeking behavior in great tit Parus major. Epigenetics. 2015;10(6):516–525.
  • Rubenstein DR, Skolnik H, Berrio A, et al. Sex-specific fitness effects of unpredictable early life conditions are associated with DNA methylation in the avian glucocorticoid receptor. Mol Ecol. 2016;25(8):1714–1728.
  • Sepers B, van den Heuvel K, Lindner M, et al. Avian ecological epigenetics: pitfalls and promises. J Ornith. 2019;160(4):1183–1203.
  • Verhoeven KJF, Vonholdt BM, Sork VL. Epigenetics in ecology and evolution: what we know and what we need to know INTRODUCTION. Mol Ecol. 2016;25(8):1631–1638.
  • Wenzel MA, Piertney SB. Fine-scale population epigenetic structure in relation to gastrointestinal parasite load in red grouse (Lagopus lagopus scotica). Mol Ecol. 2014;23(17):4256–4273.
  • Bihaqi SW. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer’s disease. Rev Environ Health. 2019;34(2):187–195.
  • Pilsner JR, Hu H, Ettinger A, et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ Health Perspect. 2009;117(9):1466–1471.
  • Wright RO, Schwartz J, Wright RJ, et al. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ Health Perspect. 2010;118(6):790–795.
  • Faulk C, Barks A, Liu K, et al. Early-life lead exposure results in dose- and sex-specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics. 2013;5(5):487–500.
  • Faulk C, Liu K, Barks A, et al. Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics. 2014;9(7):934–941.
  • Luo M, Xu Y, Cai R, et al. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol Lett. 2014;225(1):78–85.
  • Nakayama SMM, Nakata H, Ikenaka Y, et al. One year exposure to Cd- and Pb-contaminated soil causes metal accumulation and alteration of global DNA methylation in rats. Environ Pollut. 2019;252:1267–1276.
  • Sanchez-Martin FJ, Lindquist DM, Landero-Figueroa J, et al. Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology. 2015;46:92–100.
  • Singh G, Singh V, Wang ZX, et al. Effects of developmental lead exposure on the hippocampal methylome: influences of sex and timing and level of exposure. Toxicol Lett. 2018;290:63–72.
  • Wu J, Basha MR, Brock B, et al. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci. 2008;28(1):3–9.
  • Burger J, Gochfeld M. Effects of lead on birds (Laridae): a review of laboratory and field studies. J Toxicol Environ Health B Crit Rev. 2000;3(2):59–78.
  • Eeva T, Rainio M, Berglund A, et al. Experimental manipulation of dietary lead levels in great tit nestlings: limited effects on growth, physiology and survival. Ecotoxicology. 2014;23(5):914–928.
  • Koivula MJ, Eeva T. Metal-related oxidative stress in birds. Environ Pollut. 2010;158(7):2359–2370.
  • Boyd RS. Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol. 2010;36(1):46–58.
  • Eeva T, Lehikoinen E. Rich calcium availability diminishes heavy metal toxicity in Pied Flycatcher. Funct Ecol. 2004;18(4):548–553.
  • Eeva T, Ryoma M, Riihimaki J. Pollution-related changes in diets of two insectivorous passerines. Oecologia. 2005;145(4):629–639.
  • Choi SW, Friso S. Epigenetics: a new bridge between nutrition and health. Adv Nutr. 2010;1(1):8–16.
  • Konycheva G, Dziadek MA, Ferguson LR, et al. Dietary methyl donor deficiency during pregnancy in rats shapes learning and anxiety in offspring. Nutr Res. 2011;31(10):790–804.
  • Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41(2):91–102.
  • Burdge GC, Hanson MA, Slater-Jefferies JL, et al. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr. 2007;97(6):1036–1046.
  • Eeva T, Lehikoinen E, Pohjalainen T. Pollution-related variation in food supply and breeding success in two hole-nesting passerines. Ecology. 1997;78(4):1120–1131.
  • Rainio MJ, Eeva T, Lilley T, et al. Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus major). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2015b;167:24–34.
  • Ruiz S, Espin S, Rainio M, et al. Effects of dietary lead exposure on vitamin levels in great tit nestlings - An experimental manipulation. Environ Pollut. 2016;213:688–697.
  • Wreczycka K, Gosdschan A, Yusuf D, et al. Strategies for analyzing bisulfite sequencing data. J Biotechnol. 2017;261:105–115.
  • Zhang Y, Baheti S, Sun ZF. Statistical method evaluation for differentially methylated CpGs in base resolution next-generation DNA sequencing data. Brief Bioinform. 2018;19(3):374–386.
  • Derks MFL, Schachtschneider KM, Madsen O, et al. Gene and transposable element methylation in great tit (Parus major) brain and blood. Bmc Genomics. 2016;17(1):13.
  • Laine VN, Gossmann TI, Schachtschneider KM, et al. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Commun. 2016;s 7:32.
  • Verhulst EC, Mateman AC, Zwier MV, et al. Evidence from pyrosequencing indicates that natural variation in animal personality is associated with DRD4 DNA methylation. Mol Ecol. 2016;25(8):1801–1811.
  • Ruuskanen S, Eeva T, Kotitalo P, et al. No delayed behavioral and phenotypic responses to experimental early-life lead exposure in great tits (Parus major). Environ Sci Pollut Res. 2015;22(4):2610–2621.
  • Belskii EA, Bezel VS, Polents EA. Early stages of the nesting period of hollow-nesting birds under conditions of industrial-pollution. Russ J Ecol. 1995b;26:38–43.
  • Eeva T, Lehikoinen E. Growth and mortality of nestling great tits (Parus major) and pied flycatchers (Ficedula hypoleuca) in a heavy metal pollution gradient. Oecologia. 1996;108(4):631–639.
  • Eeva T, Sillanpää S, Salminen J-P. The effects of diet quality and quantity on plumage colour and growth of great tit Parus major nestlings: a food manipulation experiment along a pollution gradient. J Avian Biol. 2009;40(5):1–9.
  • DauweT, Bervoets, L, Blust, R,et al. Can Excrement and Feathers of Nestling Songbirds Be Used as Biomonitors for Heavy Metal Pollution? Archives of Environmental Contamination and Toxicology, 2000;39(4), 541–546.
  • Dauwe, T, Janssens, E, Bervoets, L,et al. Relationships between metal concentrations in great tit nestlings and their environment and food. Environmental Pollution, 2004;131(3), 373–380.
  • Nyholm NEI. Heavy metal tissue levels, impact on breeding and nestling development in natural populations of pied flycatchers (Aves) in the pollution gradient from a smelter. In: Donker M, Eijsackers H, Heimback F, editors. Ecotoxicology of soil organisms. Boca Raton: Lewis Publishers; 1994. p. 373–382.
  • Berglund, ÅMM, Ingvarsson, PK, Danielsson, H, et al. Lead exposure and biological effects in pied flycatchers (Ficedula hypoleuca) before and after the closure of a lead mine in northern Sweden. Environmental Pollution, 2010;158(5), 1368–1375.
  • Berglund, ÅMM, Rainio, MJ, & Eeva, T. (2015). Temporal Trends in Metal Pollution: Using Bird Excrement as Indicator. PLOS ONE, 10(2), e0117071.
  • Griffiths R, Double MC, Orr K, et al. A DNA test to sex most birds. Mol Ecol. 1998;7(8):1071–1075.
  • Rainio MJ, Eeva T, Lilley T, et al. Effects of early-life lead exposure on oxidative status and phagocytosis activity in great tits (Parus major). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2015a;167:24–34.
  • Andrews S 2010. FastQC: a quality control tool for high throughput sequence data . Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
  • MARTIN, Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, [S.l.], v. 17, n. 1, p. pp. 10–12, may 2011. ISSN 2226–6089.
  • Smeds, L., & Künstner, A. (2011). ConDeTri - A Content Dependent Read Trimmer for Illumina Data. PLoS ONE, 6(10), e26314.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572.
  • Hansen KD, Langmead B, Irizarry RA. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol. 2012;13.
  • Mechta M, Ingerslev LR, Fabre O, et al. Evidence suggesting absence of mitochondrial DNA methylation. Front Genet. 2017;8:9.
  • Akalin A, Kormaksson M, Li S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):9.
  • Feng H, Conneely KN, Wu H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res. 2014;42(8):11.
  • Strimmer K. Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics. 2008b;24(12):1461–1462.
  • Barton SJ, Crozier SR, Lillycrop KA, et al. Correction of unexpected distributions of P values from analysis of whole genome arrays by rectifying violation of statistical assumptions. Bmc Genomics. 2013;14.
  • Fodor AA, Tickle TL, Richardson C. Towards the uniform distribution of null p-values on Affymetrix microarrays. Genome Biol. 2007;8.
  • Garamszegi LZ, de Villemereuil P. Perturbations on the uniform distribution of p-values can lead to misleading inferences from null-hypothesis testing. Trends Neurosci Educ. 2017;8-9: 18–27.
  • Strimmer K. A unified approach to false discovery rate estimation. Bmc Bioinformatics. 2008a;9(1):14.
  • Bourgon R, Gentleman R, Huber W. Independent filtering increases detection power for high-throughput experiments. Proc Natl Acad Sci U S A. 2010;107(21):9546–9551.
  • Gentleman CV, Huber W, F H. genefilter: methods for filtering genes from high-throughput experiments. In: R package version 1.64.0. 2018.
  • Viitaniemi HM, Verhagen I, Visser ME, et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol Evol. 2019;11(3):970–983.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1):D447–D452.
  • Supek F, Bosnjak M, Skunca N, et al. REVIGO summarizes and visualizes long lists of gene ontology terms. Plos One. 2011;6(7):6.
  • Belskii EA, Bezel VS, Lyakhov AG. Characteristics of the reproductive indexes of birds nesting in tree hollows under conditions of technogenic pollution. Russ J Ecol. 1995a;26:126–131.
  • Belskii EA, Lugas’kova NV, Karfidova AA. Reproductive parameters of adult birds and morphophysiological characteristics of chicks in the pied flycatcher (Ficedula hypoleuca Pall.) in technogenically polluted habitats. Russ J Ecol. 2005;36(5):329–335.
  • Berglund AMM, Nyholm NEI. Slow improvements of metal exposure, health- and breeding conditions of pied flycatchers (Ficedula hypoleuca) after decreased industrial heavy metal emissions. SciTotal Environ. 2011;409(20):4326–4334.
  • Husby A. On the use of blood samples for measuring DNA methylation in ecological epigenetic studies. Integr Comp Biol. 2020;60(6):1558–1566.
  • Lindner M, Verhagen I, Viitaniemi HM, et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics. 2021;22(1):1–16.
  • Eeva T, Lehikoinen E, Nikinmaa M. Pollution-induced nutritional stress in birds: an experimental study of direct and indirect effects. Ecol Appl. 2003;13(5):1242–1249.
  • Sillanpää S, Salminen J-P, Eeva T. Breeding success and lutein availability in Great tit (Parus major). Acta Oecologica. 2009;35(6):805–810.
  • Berglund AMM, Rainio MJ, Eeva T. Decreased metal accumulation in passerines as a result of reduced emissions. Environ Toxicol Chem. 2012;31(6):1317–1323.
  • Dou JF, Farooqui Z, Faulk CD, et al. Perinatal Lead (Pb) exposure and cortical neuron-specific DNA methylation in male mice. Genes (Basel). 2019;10(4):15.
  • Senut MC, Cingolani P, Sen A, et al. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics. 2012;4(6):665–674.
  • Senut MC, Sen A, Cingolani P, et al. Lead Exposure disrupts global DNA methylation in human embryonic stem cells and alters their neuronal differentiation. Toxicol Sci. 2014;139(1):142–161.
  • Weng XL, Zhou DZ, Liu FT, et al. DNA methylation profiling in the thalamus and hippocampus of postnatal malnourished mice, including effects related to long-term potentiation. BMC Neurosci. 2014;25(1):8.
  • Arnold KE, Ramsay SL, Donaldson C, et al. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring. Proceedings of the Royal Society B: Biological Sciences. 2007;274(1625):2563–2569.
  • Brown S, Dragann, Vogel WH, et al. Effects of lead acetate on learning and memory in rats. Archives of Environmental Health: An International Journal. 1971;22(3):370–&.
  • Burger J, Gochfeld M. Effects of lead on learning in herring gulls: an avian wildlife model for neurobehavioral deficits. Neurotoxicology. 2005;26(4):615–624.
  • Carere C, Drent PJ, Koolhaas JM, et al. Epigenetic effects on personality traits: early food provisioning and sibling competition. Behaviour. 2005;142(9–10):1329–1355.
  • Chen JF, Chen YH, Liu W, et al. Developmental lead acetate exposure induces embryonic toxicity and memory deficit in adult zebrafish. Neurotoxicol Teratol. 2012;34(6):581–586.
  • Morgan RE, Levitsky DA, Strupp BJ. Effects of chronic lead exposure on learning and reaction time in a visual discrimination task. Neurotoxicol Teratol. 2000;22(3):337–345.
  • Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–492.
  • Lou SK, Lee HM, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15(7):21.
  • Dixon G, Liao Y, Bay LK, et al. Role of gene body methylation in acclimatization and adaptation in a basal metazoan. Proc Natl Acad Sci U S A. 2018;115(52):13342–13346.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57:289–300.
  • Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2.
  • Lemoine, M., Lucek, K., Perrier, C., et. al. Low but contrasting neutral genetic differentiation shaped by winter temperature in European great tits. Biological Journal of the Linnean Society, 2016;118(3):668–685.
  • Dolzhenko, E., & Smith, A. D. (2014). Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments. BMC Bioinformatics, 15(1):1–8.
  • Park, Y., & Wu, H. (2016). Differential methylation analysis for BS-seq data under general experimental design. Bioinformatics. 32(10):1446–1453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.