1,725
Views
4
CrossRef citations to date
0
Altmetric
Research Paper

Oleic acid-related anti-inflammatory effects in force-stressed PdL fibroblasts are mediated by H3 lysine acetylation associated with altered IL10 expression

, , & ORCID Icon
Pages 1892-1904 | Received 12 Jan 2022, Accepted 13 Jun 2022, Published online: 28 Jun 2022

References

  • Gondivkar SM, Gadbail AR, Gondivkar RS, et al. Nutrition and oral health. Dis Mon. 2019;65(6):147–154
  • Touger-Decker R;, Mobley C. Academy of,N.; dietetics, position of the academy of nutrition and dietetics: oral health and nutrition. J Acad Nutr Diet. 2013;113(5):693–701.
  • Deshpande NC, Amrutiya MR. Obesity and oral health - is there a link? An observational study. J Indian Soc Periodontol. 2017;21(3):229–233.
  • Ferreri C, Masi A, Sansone A, et al. Fatty acids in membranes as homeostatic, metabolic and nutritional biomarkers: recent advancements in analytics and diagnostics. Diagnostics. 2016;7(1):1.
  • McDonnell E, Crown SB, Fox DB, et al. Lipids reprogram metabolism to become a major carbon source for histone acetylation. Cell Rep. 2016;17(6):1463–1472.
  • Sokolova M, Vinge LE, Alfsnes K, et al. Palmitate promotes inflammatory responses and cellular senescence in cardiac fibroblasts. Biochim Biophys Acta. Mol Cell Biol Lipids. 2017;1862(2):234–245.
  • Pillon NJ, Azizi PM, Li YE, et al. Palmitate-induced inflammatory pathways in human adipose microvascular endothelial cells promote monocyte adhesion and impair insulin transcytosis. Am J Physiol Endocrinol Metab. 2015;309(1):E35–44.
  • Nemecz M, Constantin A, Dumitrescu M, et al. The distinct effects of palmitic and oleic acid on pancreatic beta cell function: the elucidation of associated mechanisms and effector molecules. Front Pharmacol. 2019;9:1554.
  • Gillet C, Spruyt D, Rigutto S, et al. Oleate abrogates palmitate-induced lipotoxicity and proinflammatory response in human bone marrow-derived mesenchymal stem cells and osteoblastic cells. Endocrinology. 2015;156(11):4081–4093.
  • de Souza CO, Valenzuela CA, Baker EJ, et al. Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mol Nutr Food Res. 2018;62(20):e1800322.
  • de Lima-Salgado TM, Alba-Loureiro TC, Do Nascimento CS, et al. Molecular mechanisms by which saturated fatty acids modulate tnf-alpha expression in mouse macrophage lineage. Cell Biochem Biophys. 2011;59(2):89–97.
  • Carrillo C, Cavia Mdel M, Alonso-Torre S. Role of oleic acid in immune system; mechanism of action; a review. Nutricion hospitalaria. 2012;27(4):978–990.
  • Al-Shudiefat AA, Sharma AK, Bagchi AK, et al. Oleic acid mitigates tnf-alpha-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem. 2013;372(1–2):75–82.
  • Korbecki J, Bajdak-Rusinek K, et al. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm Res. 2019;68(11):915–932.
  • Zhou BR, Zhang JA, Zhang Q, et al. Palmitic acid induces production of proinflammatory cytokines interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha via a nf-kappab-dependent mechanism in hacat keratinocytes. Mediators Inflamm. 2013;2013:530429.
  • Drosatos-Tampakaki Z, Drosatos K, Siegelin Y, et al. Palmitic acid and dgat1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res. 2014;29(5):1183–1195.
  • Ravaut G, Legiot A, Bergeron KF, et al. Monounsaturated fatty acids in obesity-related inflammation. Int J Mol Sci. 2020;22(1):330.
  • Milanski M, Degasperi G, Coope A, et al. Saturated fatty acids produce an inflammatory response predominantly through the activation of tlr4 signaling in hypothalamus: implications for the pathogenesis of obesity. J Neurosci. 2009;29(2):359–370.
  • Fuchs AC, Granowitz EV, Shapiro L, et al. Clinical, hematologic, and immunologic effects of interleukin-10 in humans. J Clin Immunol. 1996;16(5):291–303.
  • Niho Y, Niiro H, Tanaka Y, et al. Role of il-10 in the cross regulation of prostaglandins and cytokines in monocytes. Acta Haematol. 1998;99(3):165–170.
  • Tutunchi H, Ostadrahimi A, Saghafi-Asl M. The effects of diets enriched in monounsaturated oleic acid on the management and prevention of obesity: a systematic review of human intervention studies. Adv Nutr. 2020;11(4):864–877.
  • Symmank J, Appel S, Bastian JA, et al. Hyperlipidemic conditions impact force-induced inflammatory response of human periodontal ligament fibroblasts concomitantly challenged with p. Gingivalis-lps. Int J Mol Sci. 2021;22(11):6069.
  • Jonsson D, Nebel D, Bratthall G, et al. The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. J Periodontal Res. 2011;46(2):153–157.
  • Yamaguchi M, Fukasawa S. Is inflammation a friend or foe for orthodontic treatment?: inflammation in orthodontically induced inflammatory root resorption and accelerating tooth movement. Int J Mol Sci. 2021;22(5):2388.
  • Weltman B, Vig KW, Fields HW, et al. Root resorption associated with orthodontic tooth movement: a systematic review. Am J Orthodont Dentofac Orthoped. 2010;137(4):462–476. discussion 412A.
  • Wishney M. Potential risks of orthodontic therapy: a critical review and conceptual framework. Aust Dent J. 2017;62(1):86–96.
  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, et al. Acetyl coenzyme a: a central metabolite and second messenger. Cell Metab. 2015;21(6):805–821.
  • Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem. 2007;76(1):75–100.
  • Dancy BM, Cole PA. Protein lysine acetylation by p300/cbp. Chem Rev. 2015;115(6):2419–2452.
  • Peserico A, Simone C. Physical and functional hat/HDAC interplay regulates protein acetylation balance. J Biomed Biotechnol. 2011;2011:371832.
  • Henry RA, Kuo YM, Andrews AJ. Differences in specificity and selectivity between CBP and p300 acetylation of histone h3 and h3/h4. Biochemistry. 2013;52(34):5746–5759.
  • Henry RA, Kuo YM, Bhattacharjee V, et al. Changing the selectivity of p300 by acetyl-coa modulation of histone acetylation. ACS Chem Biol. 2015;10(1):146–156.
  • Symmank J, Chorus M, Appel S, et al. Distinguish fatty acids impact survival, differentiation and cellular function of periodontal ligament fibroblasts. Sci Rep. 2020;10(1):15706.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408.
  • Symmank J, Bayer C, Reichard J, et al. Neuronal Lhx1 expression is regulated by DNMT1-dependent modulation of histone marks. Epigenetics. 2020;15(11):1259–1274.
  • Haring M, Offermann S, Danker T, et al. Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods. 2007;3(1):11.
  • Symmank J, Bayer C, Schmidt C, et al. DNMT1 modulates interneuron morphology by regulating Pak6 expression through crosstalk with histone modifications. Epigenetics. 2018;13(5):536–556.
  • Yoon S, Eom GH. HDAC and HDAC inhibitor: from cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11.
  • Schuldt L, Reimann M, von Brandenstein K, et al. Palmitate-triggered cox2/pge2-related hyperinflammation in dual-stressed pdl fibroblasts is mediated by repressive h3k27 trimethylation. Cells. 2022;11(6):955.
  • Hemshekhar M, Sebastin Santhosh M, Kemparaju K, et al. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin Pharmacol Toxicol. 2012;110(2):122–132.
  • Bowers EM, Yan G, Mukherjee C, et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol. 2010;17(5):471–482.
  • Choi SW, Claycombe KJ, Martinez JA, et al. Nutritional epigenomics: a portal to disease prevention. Adv Nutr. 2013;4(5):530–532.
  • Zhang Y, Kutateladze TG. Diet and the epigenome. Nat Commun. 2018;9(1):3375.
  • Jo C, Park S, Oh S, et al. Histone acylation marks respond to metabolic perturbations and enable cellular adaptation. Exp Mol Med. 2020;52(12):2005–2019.
  • Al-Rekabi Z, Fura AM, Juhlin I, et al. Hyaluronan-cd44 interactions mediate contractility and migration in periodontal ligament cells. Cell Adh Migr. 2019;13(1):138–150.
  • Hsieh WC, Sutter BM, Ruess H, et al. Glucose starvation induces a switch in the histone acetylome for activation of gluconeogenic and fat metabolism genes. Mol Cell. 2022;82(1):60–74 e65.
  • Li Y, Chu JS, Kurpinski K, et al. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys J. 2011;100(8):1902–1909.
  • Denes BJ, Bolton C, Illsley CS, et al. Notch coordinates periodontal ligament maturation through regulating lamin a. J Dent Res. 2019;98(12):1357–1366.
  • Lagace TA, Ridgway ND. The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum. Mol Biol Cell. 2005;16(3):1120–1130.
  • Plackic J, Preissl S, Nikonova Y, et al. Enhanced nucleoplasmic ca(2+) signaling in ventricular myocytes from young hypertensive rats. J Mol Cell Cardiol. 2016;101:58–68.
  • Villagra A, Cheng F, Wang HW, et al. The histone deacetylase hdac11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol. 2009;10(1):92–100.
  • Leus NG, van den Bosch T, van der Wouden PE, et al. Hdac1-3 inhibitor ms-275 enhances il10 expression in raw264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice. Sci Rep. 2017;7(1):45047.
  • Di Liddo R, Valente S, Taurone S, et al. Histone deacetylase inhibitors restore il-10 expression in lipopolysaccharide-induced cell inflammation and reduce il-1beta and il-6 production in breast silicone implant in c57bl/6j wild-type murine model. Autoimmunity. 2016;1–11. doi:10.3109/08916934.2015.1134510.
  • Rutz S, Ouyang W. Regulation of interleukin-10 expression. Adv Exp Med Biol. 2016;941:89–116.
  • Hammitzsch A, Tallant C, Fedorov O, et al., Cbp30, a selective CBP/p300 bromodomain inhibitor, suppresses human th17 responses. Proceedings of the National Academy of Sciences of the United States of America; 2015. 112, p. 10768–10773. doi:10.1073/pnas.1501956112.
  • Bai AH, Wu WK, Xu L, et al. Dysregulated lysine acetyltransferase 2b promotes inflammatory bowel disease pathogenesis through transcriptional repression of interleukin-10. J Crohn’s Colitis. 2016;10(6):726–734.
  • Zheng Z, Huang G, Gao T, et al. Epigenetic changes associated with interleukin-10. Front Immunol. 2020;11:1105.
  • Hedrich CM, Rauen T, Apostolidis SA, et al., Stat3 promotes il-10 expression in lupus t cells through trans-activation and chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America; 2014. 111, p. 13457–13462. https://doi.org/10.1073/pnas.140802311
  • Sondergaard JN, Poghosyan S, Hontelez S, et al. Dc-script regulates il-10 production in human dendritic cells by modulating nf-kappa bp65 activation. J Iimmunol. 2015;195(4):1498–1505.
  • Gomes Junior AL, Islam MT, Nicolau LAD, et al. Anti-inflammatory, antinociceptive, and antioxidant properties of anacardic acid in experimental models. ACS omega. 2020;5(31):19506–19515.
  • Temme EH, Mensink RP, Hornstra G. Comparison of the effects of diets enriched in lauric, palmitic, or oleic acids on serum lipids and lipoproteins in healthy women and men. Am J Clin Nutr. 1996;63(6):897–903.
  • Bierman EL, Dole VP, Roberts TN. An abnormality of nonesterified fatty acid metabolism in diabetes mellitus. Diabetes. 1957;6(6):475–479.
  • Taskinen MR, Bogardus C, Kennedy A, et al. Multiple disturbances of free fatty acid metabolism in non insulin-dependent diabetes. Effect of oral hypoglycemic therapy. J Clin Invest. 1985;76(2):637–644.
  • Soares EA, Nakagaki WR, Garcia JA, et al. Effect of hyperlipidemia on femoral biomechanics and morphology in low-density lipoprotein receptor gene knockout mice. J Bone Miner Metab. 2012;30(4):419–425.
  • Cistola DP, Small DM. Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13c nuclear magnetic resonance study. J Clin Invest. 1991;87(4):1431–1441.
  • Kissebah AH, Alfarsi S, Adams PW, et al. Role of insulin resistance in adipose tissue and liver in the pathogenesis of endogenous hypertriglyceridaemia in man. Diabetologia. 1976;12(6):563–571.