2,488
Views
1
CrossRef citations to date
0
Altmetric
Review

Analysis approaches for the identification and prediction of N6-methyladenosine sites

, , , , , , & ORCID Icon show all

References

  • Waddington CH. The Epigenotype. Int J Epidemiol. 2012 Feb;41(1):10–24.
  • Avery OT, MacLeod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types induction of transformation by a Desoxyribonucleic Acid fraction isolated from pneumococcus Type III. J Exp Med. 1944 Feb;79(2):137–158.
  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016 Aug;17(8):487–500.
  • Saletore Y, Meyer K, Korlach J, et al. The birth of the Epitranscriptome: deciphering the function of RNA modifications. Genome Biol. 2012;13(10):175. 2012,175.
  • Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways. 2021 update. Nucleic Acids Res. 2022 Jan 7;50(D1):D231–D235.
  • Sommer S, Lavi U, Darnell JE. ABSOLUTE FREQUENCY OF LABELED N-6-METHYLADENOSINE IN HELA-CELL MESSENGER-RNA DECREASES WITH LABEL TIME. J Mol Biol. 1978;124(3):487–499.
  • Zaccara S, Ries RJ, Jaffrey SR. Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 2019 Oct;20(10):608–624.
  • Ma H, Wang X, Cai J, et al. N-6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat Chem Biol. 2019 Jan;15(1):88.
  • Nhan Van T, Ernst FG, Hawley BR, et al. The human 18S rRNA m(6)A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res. 2019 Sep 5;47(15):7719–7733.
  • Pendleton KE, Chen B, Liu K, et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 2017 May 18;169(5):824.
  • Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N-6-adenosine methylation. Nat Chem Biol. 2014 Feb;10(2):93–95.
  • Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m 6 A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science. 2015 Feb 27;347(6225):1002–1006.
  • Wang X, Feng J, Xue Y, et al. Structural basis of N-6-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016 Jun 23;534(7608):575.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011 Dec;7(12):885–887.
  • Zheng G, Dahl J, Niu Y, et al. ALKBH5 Is a Mammalian RNA Demethylase that Impacts RNA Metabolism and Mouse Fertility. Mol Cell. 2013 Jan 10;49(1):18–29.
  • Roundtree IA, Luo G-Z, Zhang Z, et al. YTHDC1 mediates nuclear export of N-6 - methyladenosine methylated mRNAs. Elife. 2017 Oct 6;6:e31311.
  • Wang X, Lu Z, Gomez A, et al. N-6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014 Jan 2;505(7481):117.
  • Wang X, Zhao B, Roundtree I, et al. N-6-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015 Jun 4;161(6):1388–1399.
  • Slobodin B, Han R, Calderone V, et al. Transcription Impacts the Efficiency of mRNA Translation via Co-transcriptional N6-adenosine Methylation. Cell. 2017 Apr 6;169(2):326–337.
  • Zhu T, Roundtree IA, Wang P, et al. Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine. Cell Res. 2014 Dec;24(12):1493–1496.
  • Roost C, Lynch SR, Batista PJ, et al. Structure and Thermodynamics of N 6 -Methyladenosine in RNA: a Spring-Loaded Base Modification. J Am Chem Soc. 2015 Feb 11;137(5):2107–2115
  • Liu N, Dai Q, Zheng G, et al. N-6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015 Feb 26;518(7540):560–564.
  • Zhou KI, Shi H, Lyu R, et al. Regulation of Co-transcriptional Pre-mRNA Splicing by m(6)A through the Low-Complexity Protein hnRNPG. Mol Cell. 2019 Oct 3;76(1):70.
  • Liu J, Dou X, Chen C, et al. N 6 -methyladenosine of chromosome-associated regulatory RNA regulates chromatin state and transcription. Science. 2020 Jan 31;367(6477):580.
  • Yoon K-J, Ringeling FR, Vissers C, et al. Temporal Control of Mammalian Cortical Neurogenesis by m(6)A Methylation. Cell. 2017 Nov 2;171(4):877.
  • Wu Y, Xie L, Wang M, et al. Mettl3-mediated m(6)A RNA methylation regulates the fate of bone marrow mesenchymal stem cells and osteoporosis. Nat Commun. 2018 Nov 14;9(4772).
  • Winkler R, Gillis E, Lasman L, et al. m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol. 2019 Feb;20(2):173.
  • Lee H, Bao S, Qian Y, et al. Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation. Nat Cell Biol. 2019 Jun;21(6):700.
  • Vu LP, Pickering BF, Cheng Y, et al. The N-6-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017 Nov;23(11):1369.
  • Yi Y-C, Chen X-Y, Zhang J, et al. Novel insights into the interplay between m(6)A modification and noncoding RNAs in cancer. Mol Cancer. 2020 Aug 7;19(1).
  • Barbieri I, Tzelepis K, Pandolfini L, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control. Nature. 2017 Dec 7;552(7683):126.
  • Fu Y, Dominissini D, Rechavi G, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation. Nat Rev Genet. 2014 May;15(5):293–306.
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m(6)A RNA methylomes revealed by m(6)A-seq. Nature. 2012 May 10;485(7397):201–U84.
  • Xu W, He C, Kaye EG, et al. Dynamic control of chromatin-associated m(6)A methylation regulates nascent RNA synthesis. Mol Cell. 2022 Mar 17;82(6):1156.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive Analysis of mRNA Methylation Reveals Enrichment in 3 ‘ UTRs and near Stop Codons. Cell. 2012 Jun 22;149(7):1635–1646.
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015 Aug;12(8):767–U114.
  • Chen K, Luo G-Z, He C. High-Resolution Mapping of N-6-Methyladenosine in Transcriptome and Genome Using a Photo-Crosslinking-Assisted Strategy. Methods in Enzymology. 2015;560:161–185.
  • Hafner M, Landthaler M, Burger L, et al. Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP. Cell. 2010 Apr 1;141(1):129–141.
  • Molinie B, Wang J, Lim KS, et al. m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome. Nat Methods. 2016 Aug;13(8):692.
  • McIntyre ABR, Gokhale NS, Cerchietti L, et al. Limits in the detection of m(6)A changes using MeRIP/m(6)A-seq. Sci Rep. 2020 Apr 20;10(1).
  • Garcia-Campos MA, Edelheit S, Toth U, et al. Deciphering the “m(6)A Code” via Antibody-Independent Quantitative Profiling. Cell. 2019 Jul 25;178(3):731.
  • Zhang Z, Chen L-Q, Zhao Y-L, et al. Single-base mapping of m 6 A by an antibody-independent method. Sci Adv. 2019 Jul;5(7):eaax0250.
  • Imanishi M, Tsuji S, Suda A, et al. Detection of N-6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Comm. 2017 Dec 14;53(96):12930–12933.
  • Meyer KD. DART-seq: an antibody-free method for global m(6)A detection. Nat Methods. 2019 Dec;16(12):1275.
  • Shu X, Dai Q, Wu T, et al. N 6 -Allyladenosine: a New Small Molecule for RNA Labeling Identified by Mutation Assay. J Am Chem Soc. 2017 Dec 6;139(48):17213–17216.
  • Hu L, Liu S, Peng Y, et al. m(6)A RNA modifications are measured at single-base resolution across the mammalian transcriptome. Nat Biotechnol. 2022 Aug;40(8):1210.
  • Koh CWQ, Goh YT, Goh WSS. Atlas of quantitative single-base-resolution N-6-methyl-adenine methylomes. Nat Commun. 2019 Dec 10;10(5636).
  • Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)A(m), and m(1)A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell. 2018 Sep 20;71(6):973.
  • Dalhoff C, Lukinavicius G, Klimasauskas S, et al. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat Chem Biol. 2006 Jan;2(1):31–32.
  • Shu X, Cao J, Cheng M, et al. A metabolic labeling method detects m(6)A transcriptome-wide at single base resolution. Nat Chem Biol. 2020 Aug;16(8):887.
  • Shu X, Cao J, Liu J. m6A-label-seq: a metabolic labeling protocol to detect transcriptome-wide mRNA N6-methyladenosine (m6A) at base resolution. STAR Protocols. 2022 march 18;3(1):101096.
  • Cohn WE, Volkin E. NUCLEOSIDE-5’-PHOSPHATES FROM RIBONUCLEIC ACID. Nature. 1951;167(4247):483–484.
  • Wang Y, Xiao Y, Dong S, et al. Antibody-free enzyme-assisted chemical approach for detection of N-6-methyladenosine. Nat Chem Biol. 2020 Aug 1;16(8):896.
  • Cao J, Shu X, Feng X-H, et al. Mapping messenger RNA methylations at single base resolution. Curr Opin Chem Biol. 2021Aug;63:28–37.
  • Garalde DR, Snell EA, Jachimowicz D, et al. Highly parallel direct RNA sequencing on an array of nanopores. Nat Methods. 2018 Mar;15(3):201.
  • Workman RE, Tang AD, Tang PS, et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods. 2019 Dec;16(12):1297.
  • Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018 Jul 13;19(90).
  • Stephenson W, Razaghi R, Busan S, et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell genomics. 2022;2(2):2022-Feb–09.
  • Vilfan ID, Tsai Y-C, Clark TA, et al. Analysis of RNA base modification and structural rearrangement by single-molecule real-time detection of reverse transcription. J Nanobiotechnology. 2013 Apr 3;11(8).
  • Zhang Y, Liu T, Meyer CA, et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9). 137.
  • Meng J, Cui X, Rao MK, et al. Exome-based analysis for RNA epigenome sequencing data. Bioinformatics. 2013 Jun 15;29(12):1565–1567.
  • Cui X, Meng J, Zhang S, et al. A novel algorithm for calling mRNA m(6)A peaks by modeling biological variances in MeRIP-seq data. Bioinformatics. 2016 Jun 15;32(12):378–385.
  • Cui X, Meng J, Rao MK, et al. HEPeak: an HMM-based exome peak-finding package for RNA epigenome sequencing data. Bmc Genomics. 2015 Apr 21;16(S2).
  • Antanaviciute A, et al. m6aViewer: software for the detection, analysis, and visualization of N-6-methyladenosine peaks from m(6)A-seq/ME-RIP sequencing data. Rna. 2017 Oct;23(10):1493–1501.
  • Li Y, Song S, Li C, et al. MeRIP-PF: an easy-to-use pipeline for high-resolution peak-finding in MeRIP-Seq data. Genomics Proteomics Bioinformatics. 2013 Feb;11(1):72–75.
  • Zhang M, Li Q, Xie Y. A Bayesian hierarchical model for analyzing methylated RNA immunoprecipitation sequencing data. Quantitative Biology. 2018 Sep;6(3):275–286.
  • Guo Z, Shafik AM, Jin P, et al. Detecting m(6)A methylation regions from Methylated RNA Immunoprecipitation Sequencing. Bioinformatics. 2021 Sep 15;37(18):2818–2824.
  • Zhang Y, Hamada M. MoAIMS: efficient software for detection of enriched regions of MeRIP-Seq. Bmc Bioinformatics. 2020 Mar 14;21(1):103.
  • Bock C. Analysing and interpreting DNA methylation data. Nat Rev Genet. 2012 Oct;13(10):705–719.
  • Meng J, Lu Z, Liu H, et al. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 2014 Oct 1;69(3):274–281.
  • Cui X, Zhang L, Meng J, et al. MeTDiff: a Novel Differential RNA Methylation Analysis for MeRIP-Seq Data. Ieee-Acm Transactions on Computational Biology and Bioinformatics. 2018 Mar-Apr;15(2):526–534.
  • Ayyala DN, Lin J, Ouyang Z. Differential RNA methylation using multivariate statistical methods. Brief Bioinform. 2022 Jan 17;23(1):309.
  • Liu L, Zhang S-W, Gao F, et al. DRME: count-based differential RNA methylation analysis at small sample size scenario. Anal Biochem. 2016 Apr 15;499:15–23.
  • Liu L, Zhang S-W, Huang Y, et al. QNB: differential RNA methylation analysis for count-based small-sample sequencing data with a quad-negative binomial model. Bmc Bioinformatics. 2017 Aug 31;18(387).
  • Zhang Z, Zhan Q, Eckert M, et al. RADAR: differential analysis of MeRIP-seq data with a random effect model. Genome Biol. 2019 Dec 23;20(1).
  • Zhang L, Meng, J, Liu, H, et al., “Detecting differentially methylated mRNA from MeRIP-Seq with likelihood ratio test,” in IEEE Global Conference on Signal and Information Processing (GlobalSIP), Atlanta, GA, 2014. Dec 03–05 2014, pp. 1368–1371
  • Zhang Y-C, Zhang S-W, Liu L, et al. Spatially Enhanced Differential RNA Methylation Analysis from Affinity-Based Sequencing Data with Hidden Markov Model. Biomed Res Int. 2015;2015:852070.
  • Xiao S, Cao S, Huang Q, et al. The RNA N-6-methyladenosine modification landscape of human fetal tissues. Nat Cell Biol. 2019 May;21(5):651.
  • Li Y, Xia L, Tan K, et al. N-6-Methyladenosine co-transcriptionally directs the demethylation of histone H3K9me2. Nat Genet. 2020 Sep;52(9):870.
  • Schwartz S, Mumbach M, Jovanovic M, et al. Perturbation of m6A Writers Reveals Two Distinct Classes of mRNA Methylation at Internal and 5 ‘ Sites. Cell Rep. 2014 Jul 10;8(1):284–296.
  • Cui X, Meng J, Zhang S, et al. A hierarchical model for clustering m(6)A methylation peaks in MeRIP-seq data. Bmc Genomics. 2016 Aug 22;17(520).
  • Zhang L, He Y, Wang H, et al. Clustering Count-based RNA Methylation Data Using a Nonparametric Generative Model. Curr Bioinf. 2019;14(1):11–23.
  • Liu L, Zhang S-W, Zhang Y-C, et al. Decomposition of RNA methylome reveals co-methylation patterns induced by latent enzymatic regulators of the epitranscriptome. Mol Biosyst. 2015 Jan;11(1):262–274.
  • Chen S, Zhang L, Lu L, et al. FBCwPlaid: a Functional Biclustering Analysis of Epi-Transcriptome Profiling Data Via a Weighted Plaid Model. Ieee-Acm Transactions on Computational Biology and Bioinformatics. 2022 May-Jun;19(3):1640–1650.
  • Liu Z, Xiao Y, Yin H, et al. BDBB: a Novel Beta-Distribution-Based Biclustering Algorithm for Revealing Local Co-Methylation Patterns in Epi-Transcriptome Profiling Data. IEEE J Biomed Health Inform. 2022 Jun;26(6):2405–2416.
  • Zhang L, Chen S, Ma J, et al. REW-ISA V2: a Biclustering Method Fusing Homologous Information for Analyzing and Mining Epi-Transcriptome Data. Front Genet. 2021 May 28;12(654820).
  • Chen K, Wei Z, Liu H, et al. Enhancing Epitranscriptome Module Detection from m(6)A-Seq Data Using Threshold-Based Measurement Weighting Strategy. Biomed Res Int. 2018;2018:2075173.
  • Helm M, Motorin Y. Detecting RNA modifications in the epitranscriptome: predict and validate,” (in English. Nat. Rev. Genet., Review, 2017 May;18(5):275–291.
  • Behm-Ansmant I, Helm M, Motorin Y. Use of specific chemical reagents for detection of modified nucleotides in RNA,” (in English. J Nucleic Acids. 2011 Apr;2011:408053.
  • Schwartz S, Bernstein D, Mumbach M, et al. Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA,” (in English. Cell. 2014 Sep;159(1):148–162.
  • Head SR, Komori HK, LaMere SA, et al. Library construction for next-generation sequencing: overviews and challenges,” (in English. Biotechniques. 2014 Feb;56(2):61.
  • Ryvkin P, Leung YY, Silverman IM, et al. HAMR: high-throughput annotation of modified ribonucleotides,” (in English. Rna. 2013 Dec;19(12):1684–1692.
  • Hauenschild R, Werner S, Tserovski L, et al. CoverageAnalyzer (CAn): a Tool for Inspection of Modification Signatures in RNA Sequencing Profiles,” (in English. Biomolecules. 2016 Dec;6(4):7.
  • Schmidt L, Werner S, Kemmer T, et al. Graphical Workflow System for Modification Calling by Machine Learning of Reverse Transcription Signatures,” (in English. Front Genet. 2019 Sep;10(876):11.
  • Motorin Y, Helm M. Methods for RNA Modification Mapping Using Deep Sequencing: established and New Emerging Technologies,” (in English. Genes, Review. 2019 Jan;10(1):12.
  • Hansen KD, Brenner SE, Dudoit S. Biases in Illumina transcriptome sequencing caused by random hexamer priming,” (in English. Nucleic Acids Res. 2010 Jul 7;38(12):e131.
  • Jenjaroenpun P, Wongsurawat T, Wadley TD, et al. Decoding the epitranscriptional landscape from native RNA sequences. Nucleic Acids Res, vol. 49, no. 2, 2021 Jan 25:7.
  • Liu H, Begik O, Novoa EM. EpiNano: detection of m6A RNA Modifications Using Oxford Nanopore Direct RNA Sequencing. Methods Mol Biol. 2021;2298:31–52.
  • Parker MT, Knop K, Sherwood AV, et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m(6)A modification. Elife. 2020 Jan 14;9:e49658.
  • Abebe JS, Price AM, Hayer KE, et al. DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing. Bioinformatics. 2022 May 26;38(11):3113–3115.
  • Lorenz DA, Sathe S, Einstein JM, et al. Direct RNA sequencing enables m(6)A detection in endogenous transcript isoforms at base-specific resolution. Rna. 2020 Jan;26(1):19–28.
  • Stoiber M, Quick J, Egan R, et al. De novo identification of DNA modifications enabled by genome-guided nanopore signal processing. BioRxiv. 2017.
  • Leger A, Amaral PP, Pandolfini L, et al. RNA modifications detection by comparative Nanopore direct RNA sequencing. Nat Commun. 2021 Dec 10;12(1).
  • Pratanwanich PN, Yao F, Chen Y, et al. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore. Nat Biotechnol. 2021 Nov;39(11):1394.
  • Parker MT, Barton GJ, Simpson GG. Yanocomp: robust prediction of m6A modifications in individual nanopore direct RNA reads. bioRxiv. 2021.
  • Nguyen TA, Heng JWJ, Kaewsapsak P, et al. Direct identification of A-to-I editing sites with nanopore native RNA sequencing. Nat Methods. 2022 Jul;19(7):833.
  • Ramasamy S, Sahayasheela VJ, Sharma S, et al. Chemical Probe-Based Nanopore Sequencing to Selectively Assess the RNA Modifications. ACS Chem Biol. 2022 Oct 21;17(10):2704–2709.
  • Begik O, Lucas MC, Pryszcz LP, et al. Quantitative profiling of pseudouridylation dynamics in native RNAs with nanopore sequencing. Nat Biotechnol. 2021 Oct;39(10):1278.
  • Fu LM, Niu BF, Zhu ZW, et al. CD-HIT: accelerated for clustering the next-generation sequencing data,” (in English. Bioinformatics. 2012 Dec;28(23):3150–3152.
  • Chen Z, Zhao P, Li F, et al. Comprehensive review and assessment of computational methods for predicting RNA post-transcriptional modification sites from RNA sequences. Brief Bioinform. 2020 Sep;21(5):1676–1696.
  • Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform. 2019 Jul;20(4):1280–1294.
  • Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res. 2019 Nov 18;47(20):e127–e127.
  • Muhammod R, Ahmed S, Farid DM, et al. PyFeat: a Python-based effective feature generation tool for DNA, RNA and protein sequences. Bioinformatics. 2019 Oct 1;35(19):3831–3833.
  • Li H-L, Pang Y-H, Liu B. BioSeq-BLM: a platform for analyzing DNA, RNA and protein sequences based on biological language models. Nucleic Acids Res. 2021 Dec 16;49(22):e129–e129.
  • Peng HC, Long FH, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1226–1238.
  • Zhu X, He J, Zhao S, et al. A comprehensive comparison and analysis of computational predictors for RNA N6-methyladenosine sites of Saccharomyces cerevisiae. Brief Funct Genomics. 2019 Nov;18(6):367–376.
  • El Allali A, Elhamraoui Z, Daoud R. Machine learning applications in RNA modification sites prediction. Comput Struct Biotechnol J. 2021;19:5510–5524.
  • Chen X, Sun Y-Z, Liu H, et al. RNA methylation and diseases: experimental results, databases, Web servers and computational models. Brief Bioinform. 2019 May;20(3):896–917.
  • Chen K, et al. WHISTLE: a high-accuracy map of the human N-6-methyladenosine (m(6)A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Res. 2019 Apr 23;47(7):e41–e41.
  • Dao F-Y, Lv H, Yang Y-H, et al. Computational identification of N6-methyladenosine sites in multiple tissues of mammals. Comput Struct Biotechnol J. 2020;18:1084–1091.
  • Chen W, Tang H, Lin H. MethyRNA: a web server for identification of N-6-methyladenosine sites. J Biomol Struct Dyn. 2017;35(3):683–687.
  • Zhou Y, Zeng P, Li Y-H, et al. SRAMP: prediction of mammalian N 6 -methyladenosine (m 6 A) sites based on sequence-derived features. Nucleic Acids Res. 2016 Jun 2;44(10):e91–e91.
  • Zhao Z, Peng H, Lan C, et al. Imbalance learning for the prediction of N-6-Methylation sites in mRNAs. Bmc Genomics. 2018 Aug 1;19(574).
  • Qiang X, Chen H, Ye X, et al. M6AMRFS: robust Prediction of N6-Methyladenosine Sites With Sequence-Based Features in Multiple Species. Front Genet. 2018 Oct 25;9(495).
  • Zou Q, Xing P, Wei L, et al. Gene2vec: gene subsequence embedding for prediction of mammalian N-6-methyladenosine sites from mRNA. Rna. 2019 Feb;25(2):205–218.
  • Huang Y, He N, Chen Y, et al. BERMP: a cross-species classifier for predicting m(6)A sites by integrating a deep learning algorithm and a random forest approach. Int J Biol Sci. 2018;14(12):1669–1677.
  • Ke S, Alemu EA, Mertens C, et al. A majority of m 6 A residues are in the last exons, allowing the potential for 3’ UTR regulation. Genes Dev. 2015 Oct 1;29(19):2037–2053.
  • Mendel M, Delaney K, Pandey RR, et al. Splice site m(6)A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell. 2021 Jun 10;184(12):3125.
  • Koertel N, Rueckle C, Zhou Y, et al. Deep and accurate detection of m(6)A RNA modifications using miCLIP2 and m6Aboost machine learning. Nucleic Acids Res. 2021 Sep 20;49(16):92.
  • Huang D, Chen K, Song B, et al. Geographic encoding of transcripts enabled high-accuracy and isoform-aware deep learning of RNA methylation. Nucleic Acids Res. 2022 Oct 14;50(18):10290–10310.
  • Zhang L, Li G, Li X, et al. EDLm(6)APred: ensemble deep learning approach for mRNA m(6)A site prediction. Bmc Bioinformatics. 2021 May 29;22(1):288.
  • Wang H, Liu H, Huang T, et al. EMDLP: ensemble multiscale deep learning model for RNA methylation site prediction. Bmc Bioinformatics. 2022 Jun 8;23(1):221
  • Xiong Y, He X, Zhao D, et al. Modeling multi-species RNA modification through multi-task curriculum learning. Nucleic Acids Res. 2021 Apr 19;49(7):3719–3734.
  • Huang D, Song B, Wei J, et al. Weakly supervised learning of RNA modifications from low-resolution epitranscriptome data. Bioinformatics. 2021 Jul;37(Supplement_1):I222–I230.
  • Liang Z, Zhang L, Chen H, et al. m6A-Maize: weakly supervised prediction of m(6)A-carrying transcripts and m(6)A-affecting mutations in maize (Zea mays). Methods. 2022Jul;203:226–232.
  • Song Z, Huang D, Song B, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021 Jun 29;12(1):4011.
  • Zhang Y, Hamada M. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning. Bmc Bioinformatics. 2018 Dec 31;19(524).
  • Siepel A, Bejerano G, Pedersen JS, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034–1050.
  • Sanger HL, Klotz G, Riesner D, et al. VIROIDS ARE SINGLE-STRANDED COVALENTLY CLOSED CIRCULAR RNA MOLECULES EXISTING AS HIGHLY BASE-PAIRED ROD-LIKE STRUCTURES. Proc Natl Acad Sci U S A. 1976;73(11):3852–3856.
  • Hsu MT, Cocaprados M. Electron-Microscopic Evidence For The Circular Form Of Rna In The Cytoplasm Of Eukaryotic Cells. Nature. 1979;280(5720):339–340.
  • Chen -L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015 Apr;12(4):381–388.
  • Sirkisoon SR, Carpenter RL, Rimkus T, et al. TGLI1 transcription factor mediates breast cancer brain metastasis via activating metastasis-initiating cancer stem cells and astrocytes in the tumor microenvironment. Oncogene. 2020 Jan;39(1):64–78.
  • Cardamone G, Paraboschi EM, Rimoldi V, et al. The Characterization of GSDMB Splicing and Backsplicing Profiles Identifies Novel Isoforms and a Circular RNA That Are Dysregulated in Multiple Sclerosis. Int J Mol Sci. 2017Mar;18(3):576.
  • Dube U, Del-Aguila JL, Li Z, et al. An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat Neurosci. 2019 Nov;22(11):1903.
  • Meyer KD, Jaffrey SR. The dynamic epitranscriptome: n-6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. 2014 May;15(5):313–326.
  • Li Z, Yang H-Y, Dai X-Y, et al. CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int J Biol Sci. 2021;17(5):1178–1190.
  • Chen C, Yuan W, Zhou Q, et al. N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 2021;11(9):4298–4315.
  • Wu Q, Yin X, Zhao W, et al. Molecular mechanism of m(6)A methylation of circDLC1 mediated by RNA methyltransferase METTL3 in the malignant proliferation of glioma cells. Cell Death Discov. 2022 Apr 26;8(1): 229.
  • Wu A, Hu Y, Xu Y, et al. Methyltransferase-Like 3-Mediated m6A Methylation of Hsa_circ_0058493 Accelerates Hepatocellular Carcinoma Progression by Binding to YTH Domain-Containing Protein 1. Front Cell Dev Biol. 2021 Nov 23;9(762588).
  • Yang Y, Fan X, Mao M, et al. Extensive translation of circular RNAs driven by N-6-methyladenosine. Cell Res. 2017 May;27(5):626–641.
  • Zhou C, Molinie B, Daneshvar K, et al. Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs. Cell Rep. 2017 Aug 29;20(9):2262–2276.
  • Ye Y, Feng W, Zhang J, et al. Genome-wide identification and characterization of circular RNA m(6)A modification in pancreatic cancer. Genome Med. 2021 Nov 19;13(1): 183.
  • Liang W, et al. Microarray and bioinformatic analysis reveal the parental genes of m6A modified circRNAs as novel prognostic signatures in colorectal cancer. Front Oncol. 2022 Jul 29;12(939790).
  • Fan H-N, Chen Z-Y, Chen X-Y, et al. METTL14-mediated m(6)A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Mol Cancer. 2022 Feb 14;21(1:51.
  • Ivanov YD, et al. Nanoribbon-Based Electronic Detection of a Glioma-Associated Circular miRNA. Biosensors-Basel. 2021 Jul;11(7):237.
  • Ivanov YD, Malsagova KA, Popov VP, et al. Micro-Raman Characterization of Structural Features of High-k Stack Layer of SOI Nanowire Chip, Designed to Detect Circular RNA Associated with the Development of Glioma. Molecules. 2021Jun;261:3715.
  • Sun W-J, Li J-H, Liu S, et al. RMBase: a resource for decoding the landscape of RNA modifications from high-throughput sequencing data. Nucleic Acids Res. 2016 Jan 4;44(D1):D259–D265.
  • Xuan -J-J, Sun W-J, Lin P-H, et al. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 2018 Jan 4;46(D1):D327–D334.
  • Machnicka MA, Milanowska K, Osman Oglou O, et al. MODOMICS: a database of RNA modification pathways-2013 update. Nucleic Acids Res. 2013 Jan;41(D1):D262–D267.
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018 Jan 4;46(D1):D303–D307.
  • Wishart DS, Feunang YD, Marcu A, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D608–D617.
  • Kim S, Chen J, Cheng T, et al. PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res. 2021 Jan 8;49(D1):D1388–D1395.
  • Mendez D, Gaulton A, Bento AP, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019 Jan 8;47(D1):D930–D940.
  • Tang Y, Chen K, Song B, et al. m(6)A-Atlasm6A-Atlas: a comprehensive knowledgebase for unraveling the N-6-methyladenosine N 6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021 Jan 8;49(D1):D134–D143.
  • Zhou D, Wang H, Bi F, et al. M6ADD: a comprehensive database of m 6 A modifications in diseases. RNA Biol. 2021 Dec 2;18(12):2354–2362.
  • Zheng Y, Nie P, Peng D, et al. m6AVar: a database of functional variants involved in m(6)A modification. Nucleic Acids Res. 2018 Jan 4;46(D1):D139–D145.
  • Liu S, Chen L, Zhang Y, et al. M6AREG: m(6)A-centered regulation of disease development and drug response. Nucleic Acids Res. 2022.
  • Liu S, Zhu A, He C, et al. REPIC: a database for exploring the N-6-methyladenosine methylome. Genome Biol. 2020 Apr 28;21(1:100.
  • Liu H, Flores MA, Meng J, et al. MeT-DB: a database of transcriptome methylation in mammalian cells. Nucleic Acids Res. 2015 Jan 28;43(D1):D197–D203.
  • Deng S, Zhang H, Zhu K, et al. M6A2Target: a comprehensive database for targets of m 6 A writers, erasers and readers. Brief Bioinform. 2021;22(3).
  • Thuring K, Schmid K, Keller P, et al. LC-MS Analysis of Methylated RNA. Methods Mol Biol. 2017;1562:3–18.
  • Wang Y, Li Y, Toth JI, et al. N-6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol. 2014 Feb;16(2):191–198.
  • Liu N, Parisien M, Dai Q, et al. Probing N-6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. Rna. 2013 Dec;19(12):1848–1856.
  • Liu W, Yan J, Zhang Z, et al. Identification of a selective DNA ligase for accurate recognition and ultrasensitive quantification of N-6-methyladenosine in RNA at one-nucleotide resolution. Chem Sci. 2018 Apr 7;9(13):3354–3359.
  • Xiao Y, Wang Y, Tang Q, et al. An elongation- and ligation-based qPCR amplification method for the radiolabeling-free detection of locus-specific N-6-methyladenosine modification. Angew Chem-Int Ed. 2018 Dec 3;57(49):15995–16000.
  • Kumari A, Lobiyal DK. Efficient estimation of Hindi WSD with distributed word representation in vector space. Journal of King Saud University-Computer and Information Sciences. Sep 2022;34(8):6092–6103.
  • Dai H, Umarov R, Kuwahara H, et al. Sequence2Vec: a novel embedding approach for modeling transcription factor binding affinity landscape. Bioinformatics. 2017 Nov 15;33(22):3575–3583.