4,584
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq

, , , &
Article: 2163365 | Received 01 Jul 2022, Accepted 23 Dec 2022, Published online: 03 Jan 2023

References

  • COHN WE, VOLKIN E. Nucleoside-5'-phosphates from ribonucleic acid. Nature. 1951 Mar;167(4247):483–14.
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018 Jan;46(D1):D303–D307.
  • Jia G, Fu Y, Zhao X, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011 Dec;7(12):885–887.
  • Zheng G, Dahl J, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013 Jan;49(1):18–29.
  • Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, et al. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013 Jan;8(1):176–189.
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell. 2012 Jun;149(7):1635–1646.
  • Schwartz S, Mumbach M, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites. Cell Rep. 2014 Jul;8(1):284–296.
  • Xu C, Wang X, Liu K, et al. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat Chem Biol. 2014 Nov;10(11):927–929.
  • Fu Y, Jia G, Pang X, et al. FTO-mediated formation of N6-hydroxymethyladenosine and N6-formyladenosine in mammalian RNA. Nat Commun. 2013 Jun;4(1). DOI:10.1038/ncomms2822.
  • Roundtree IA, Evans ME, Pan T, et al. Dynamic RNA modifications in gene expression regulation. Cell. 2017 Jun;169(7):1187–1200.
  • Frye M, Harada BT, Behm M, et al. RNA modifications modulate gene expression during development. Science. 1979 , Sep. 2018;361(6409). DOI:10.1126/science.aau1646.
  • Hsu PJ, Shi H, He C. Epitranscriptomic influences on development and disease. Genome Biol. 2017 Dec;18(1):DOI:10.1186/s13059-017-1336-6
  • Liu H, Begik, O, Lucas, MC, et al. Accurate detection of m6A RNA modifications in native RNA sequences. Nat Commun. 2019 Dec;10(1). DOI:10.1038/s41467-019-11713-9.
  • Coker H, Wei G, Moindrot B, et al. The role of the Xist 5’ m6A region and RBM15 in X chromosome inactivation. Wellcome Open Res. 2020Feb;5:31.
  • Ma S, Chen C, Ji X, et al. The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 2019 Dec;12(1). DOI:10.1186/s13045-019-0805-7.
  • Ariel F, Lucero L, Christ A, et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020 Mar;77(5):1055–1065.e4.
  • Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010 Apr;464(7291):1071–1076.
  • Zhang K, Han X, Zhang Z, et al. The liver-enriched lnc-LFAR1 promotes liver fibrosis by activating TGFβ and Notch pathways. Nat Commun. 2017 Dec;8(1). DOI:10.1038/s41467-017-00204-4.
  • Zhang Y, Pitchiaya S, Cieślik M, et al. Analysis of the androgen receptor–regulated lncRNA landscape identifies a role for ARLNC1 in prostate cancer progression. Nat Genet. 2018 Jun;50(6):814–824.
  • Linder B, V Grozhik A, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015 Aug;12(8):767–772.
  • Patil DP, Chen C-K, Pickering BF, et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature. 2016 Sep;537(7620):369–373.
  • Zhou KI, Parisien M, Dai Q, et al. N6-methyladenosine modification in a long noncoding RNA hairpin predisposes its conformation to protein binding. J Mol Biol. 2016 Feb;428(5):822–833.
  • Uphoff CC, Drexler HG. Detection of mycoplasma contamination in cell cultures. Curr Protoc Mol Biol. 2014 Apr;106(1):DOI:10.1002/0471142727.mb2804s106
  • Broad Institute, “Picard Toolkit.” Broad Institute, Boston, 2019. cited: Oct. 17, 2022. [Online 2022 Oct 17: https://broadinstitute.github.io/picard/
  • Kim D, Paggi JM, Park C, et al. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019 Aug;37(8):907–915.
  • Ewels PA, Peltzer A, Fillinger S, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020 Mar;38(3):276–278.
  • Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018 Sep;34(18):3094–3100.
  • Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021 Jan;10(2). DOI:10.1093/gigascience/giab008.
  • Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012 Aug;28(16):2184–2185.
  • Wang L, Nie J, Sicotte H, et al. Measure transcript integrity using RNA-seq data. BMC Bioinformatics. 2016 Dec;17(1):58.
  • de Coster W, D’Hert S, Schultz DT, et al. NanoPack: visualizing and processing long-read sequencing data. Bioinformatics. 2018 Aug;34(15):2666–2669.
  • Bowman RL, Wang Q, Carro A, et al. GlioVis data portal for visualization and analysis of brain tumor expression datasets. Neuro Oncol. 2017;19(1):139–141.
  • Kuo RI, Tseng E, Eory L, et al. Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human. BMC Genomics. 2017 Apr;18(1):DOI:10.1186/S12864-017-3691-9
  • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010 May;28(5):511–515.
  • Li Z-X, Zheng Z-Q, Yang P-Y, et al. WTAP-mediated m6A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 2022 Jan. DOI:10.1038/s41418-021-00905-w.
  • Garcia-Campos MA, Edelheit S, Toth U, et al. Deciphering the ‘m6A code’ via antibody-independent quantitative profiling. Cell. 2019 Jul;178(3):731–747.e16.
  • Yang H, Lam SL. Effect of 1-methyladenine on thermodynamic stabilities of double-helical DNA structures. FEBS Lett. 2009 May;583(9):1548–1553.
  • McIntyre ABR, Gokhale NS, Cerchietti L, et al. Limits in the detection of m6A changes using MeRIP/m6A-seq. Sci Rep. 2020 Dec;10(1):DOI:10.1038/S41598-020-63355-3
  • Ning Q, Li Y, Wang Z, et al. The evolution and expression pattern of human overlapping lncRNA and protein-coding gene pairs. Sci Rep. 2017 Mar;7(1):DOI:10.1038/srep42775
  • Liu B, Feo T, Harvey TA, et al. A potentially abundant junctional RNA motif stabilized by m6A and Mg2+. Nat Commun. 2018;9(1):1–10.
  • Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 2017 Jun;45(10):6051–6063.
  • Tu Z, Wu L, Wang P, et al. N6-methylandenosine-related lncRNAs are potential biomarkers for predicting the overall survival of lower-grade glioma patients. Front Cell Dev Biol. 2020 Jul;8. DOI:10.3389/FCELL.2020.00642
  • Cong P, Wu T, Huang X, et al. Identification of the role and clinical prognostic value of target genes of m6A RNA methylation regulators in glioma. Front Cell Dev Biol. 2021 Sep;9. DOI:10.3389/FCELL.2021.709022