1,494
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

Coordinated alternation of DNA methylation and alternative splicing of PBRM1 affect bovine sperm structure and motility

, , , , , , , , , , , , , & show all
Article: 2183339 | Received 23 Aug 2022, Accepted 15 Feb 2023, Published online: 03 Mar 2023

References

  • Druet T, Fritz S, Sellem E, et al. Estimation of genetic parameters and genome scan for 15 semen characteristics traits of Holstein bulls. J Anim Breed Genet. 2009;126(4):269–16.
  • Mathevon M, Buhr MM, Dekkers JC. Environmental, management, and genetic factors affecting semen production in Holstein bulls. J Dairy Sci. 1998;81(12):3321–3330.
  • Lessard C, Masseau I, Bilodeau JF, et al. Semen characteristics of genetically identical quadruplet bulls. Theriogenology. 2003;59(8):1865–1877.
  • Snoj T, Kobal S, Majdic G. Effects of season, age, and breed on semen characteristics in different bos Taurus breeds in a 31-year retrospective study. Theriogenology. 2013;79(5):847–852.
  • Lonergan P, Fair S. Influence of bull age, ejaculate number, and season of collection on semen production and sperm motility parameters in Holstein Friesian bulls in a commercial artificial insemination centre. J Anim Sci. 2018;96(6):2408–2418.
  • Guo F, Yang B, Ju ZH, et al. Alternative splicing, promoter methylation, and functional SNPs of sperm flagella 2 gene in testis and mature spermatozoa of Holstein bulls. Reproduction. 2014;147(2):241–252.
  • Wang X, Yang C, Guo F, et al. Integrated analysis of mRNAs and long noncoding RNAs in the semen from Holstein bulls with high and low sperm motility. Sci Rep. 2019;9(1):2092.
  • Egger G, Liang G, Aparicio A, et al. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004;429(6990):457–463.
  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–476.
  • Bell JT, Spector TD. A twin approach to unraveling epigenetics. Trends Genet. 2011;27(3):116–125.
  • Tan Q, Christiansen L, von Bornemann Hjelmborg J, et al. Twin methodology in epigenetic studies. J Exp Biol. 2015;218(Pt 1):134–139.
  • Du Y, Li M, Chen J, et al. Promoter targeted bisulfite sequencing reveals DNA methylation profiles associated with low sperm motility in asthenozoospermia. Hum Reprod. 2016;31(1):24–33.
  • Boissonnas CC, Abdalaoui HE, Haelewyn V, et al. Specific epigenetic alterations of IGF2-H19 locus in spermatozoa from infertile men. Eur J Hum Genet. 2010;18(1):73–80.
  • Laqqan M, Tierling S, Alkhaled Y, et al. Alterations in sperm DNA methylation patterns of oligospermic males. Reprod Biol. 2017;17(4):396–400.
  • Capra E, Lazzari B, Turri F, et al. Epigenetic analysis of high and low motile sperm populations reveals methylation variation in satellite regions within the pericentromeric position and in genes functionally related to sperm DNA organization and maintenance in Bos Taurus. BMC Genomics. 2019;20(1):940.
  • Verma A, Rajput S, De S, et al. Genome-wide profiling of sperm DNA methylation in relation to Buffalo (Bubalus bubalis) bull fertility. Theriogenology. 2014;82(5):750–9.e1.
  • Kropp J, Carrillo JA, Namous H, et al. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics. 2017;18(1):280.
  • Shojaei Saadi HA, É F, Vigneault C, et al. Genome-wide analysis of sperm DNA methylation from monozygotic twin bulls. Reprod Fertil Dev. 2017;29(4):838–843.
  • Perrier J, Sellem E, Prézelin A, et al. A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features. BMC Genomics. 2018;19(1):404.
  • Zhou Y, Connor EE, Bickhart DM, et al. Comparative whole genome DNA methylation profiling of cattle sperm and somatic tissues reveals striking hypomethylated patterns in sperm. Gigascience. 2018;7(5):giy039.
  • Ahlawat S, Sharma R, Arora R, et al. Promoter methylation and expression analysis of Bvh gene in bulls with varying semen motility parameters. Theriogenology. 2019;125:152–156.
  • Liu Y, Zhang Y, Yin J, et al. Distinct H3K9me3 and DNA methylation modifications during mouse spermatogenesis. J Biol Chem. 2019;294(49):18714–18725.
  • Liu S, Fang L, Zhou Y, et al. Analyses of inter-individual variations of sperm DNA methylation and their potential implications in cattle. BMC Genomics. 2019;20(1):888.
  • Lev Maor G, Yearim A, Ast G. The alternative role of DNA methylation in splicing regulation. Trends Genet. 2015;31(5):274–280.
  • Linker SM, Urban L, Clark SJ, et al. Combined single-cell profiling of expression and DNA methylation reveals splicing regulation and heterogeneity. Genome Biol. 2019;20(1):30.
  • Yoshimi A, Lin KT, Wiseman DH, et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature. 2019;574(7777):273–277.
  • Lu H, Sun F, Wang G, et al. Technical code of practice of bovine frozen semen production, NY/T 1234-2018. Ministry of Agriculture and Rural Affairs of the People’s Republic of China.
  • Herthnek D, Englund S, Willemsen P, et al. Sensitive detection of Mycobacterium avium subspparatuberculosis in bovine semen by real-time PCR. J Appl Microbiol. 2006;100(5):1095–1102.
  • Gu H, Bock C, Mikkelsen TS, et al. Genome-scale DNA methylation mapping of clinical samples at single-nucleotide resolution. Nat Methods. 2010;7(2):133–136.
  • Gu H, Smith ZD, Bock C, et al. Preparation of reduced representation bisulfte sequencing libraries for genome-scale DNA methylation profling. Nat Protoc. 2011;6(4):468–481.
  • Langmead B . Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinformatics. Wiley Online Library. 2010.
  • Akalin A, Kormaksson M, Li S, et al. Methylkit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.
  • Luo W, Brouwer C. Pathview: an R/Biocondutor package for pathway-based data integration and visualization. Bioinformatics. 2013;29(14):1830–1831.
  • Luo W, Pant G, Bhavnasi YK, et al. Pathview Web: user friendly pathway visualization and data integration. Nucleic Acids Res. 2017;45(W1):W501–W508.
  • Dupont JM, Tost J, Jammes H, et al. De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem. 2004;333(1):119–127.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.
  • He Z, Jiang J, Kokkinaki M, et al. Nodal signaling via an autocrine pathway promotes proliferation of mouse spermatogonial stem/progenitor cells through Smad2/3 and Oct- 4activation. Stem Cells. 2009;27(10):2580–2590.
  • Kotaja N, Macho B, Sassone-Corsi P. Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J Biol Chem. 2005;280(36):31739–31745.
  • Kim Y, Fedoriw AM, Magnuson T. An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis. Development. 2012;139(6):1133–1140.
  • Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1(5):e1500447.
  • Menon DU, Shibata Y, Mu W, et al. Mammalian SWI/SNF collaborates with a polycomb-associated protein to regulate male germline transcription in the mouse. Development. 2019;146(19):dev174094.
  • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32.
  • Wei Y, Yang CR, Wei YP, et al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA. 2014;111(5):1873–1878.
  • Houshdaran S, Cortessis VK, Siegmund K, et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2(12):e1289.
  • Montjean D, Zini A, Ravel C, et al. Sperm global DNA methylation level: association with semen parameters and genome integrity. Andrology. 2015;3(2):235–240.
  • Narud B, Khezri A, Zeremichael TT, et al. Sperm chromatin integrity and DNA methylation in Norwegian Red bulls of contrasting fertility. Mol Reprod Dev. 2021;88(3):187–200.
  • Bell JT, Spector TD. DNA methylation studies using twins: what are they telling us? Genome Biol. 2012;13(10):172.
  • Liu S, Chen S, Cai W, et al. Divergence analyses of sperm DNA methylomes between monozygotic twin AI bulls. Epigenomes. 2019;3(4):21.
  • González-Fernández L, Macías-García B, Loux SC, et al. Focal adhesion kinases and calcium/calmodulin-dependent protein kinases regulate protein tyrosine phosphorylation in stallion sperm. Biol Reprod. 2013;88(6):138.
  • Wong EW, Lee WM, Cheng CY. Secreted Frizzled-related protein 1 (sFRP1) regulates spermatid adhesion in the testis via dephosphorylation of focal adhesion kinase and the nectin-3 adhesion protein complex. FASEB J. 2013;27(2):464–477.
  • Ni F, Hao S, Yang W. Multiple signaling pathways in Sertoli cells: recent findings in spermatogenesis. Cell Death Dis. 2019;10(8):541.
  • Chung J, Shim S, Everley R, et al. Structurally distinct Ca(2+) signaling domains of sperm flagella orchestrate tyrosine phosphorylation and motility. Cell. 2014;157(4):808–822.
  • Wang J, Tang C, Wang Q, et al. NRF1 coordinates with DNA methylation to regulate spermatogenesis. FASEB J. 2017;31(11):4959–4970.
  • Varela I, Tarpey P, Raine K, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature. 2011;469(7331):539–542.
  • Euskirchen G, Auerbach RK, Snyder M. SWI/SNF chromatin-remodeling factors: multiscale analyses and diverse functions. J Biol Chem. 2012;287(37):30897–30905.
  • Maunakea AK, Chepelev I, Cui K, et al. Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition. Cell Res. 2013;23(11):1256–1269.
  • Shayevitch R, Askayo D, Keydar I, et al. The importance of DNA methylation of exons on alternative splicing. RNA. 2018;24(10):1351–1362.
  • Ho HC, Suarez SS. Characterization of the intracellular calcium store at the base of the sperm flagellum that regulates hyperactivated motility. Biol Reprod. 2003;68(5):1590–1596.