1,935
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Differential methylation pattern in pubertal girls associated with biochemical premature adrenarche

, , , , , , , , & show all
Article: 2200366 | Received 06 Oct 2022, Accepted 23 Mar 2023, Published online: 13 Apr 2023

References

  • Ibáñez L, Dimartino-Nardi J, Potau N, et al. Premature adrenarche—normal variant or forerunner of adult disease? Endocrine Reviews. 2000;21(6):671–12.
  • Utriainen P, Laakso S, Liimatta J, et al. Premature adrenarche–a common condition with variable presentation. Hormone Res Paediatrics. 2015;83(4):221–231.
  • Mäntyselkä A, Jääskeläinen J, Lindi V, et al. The presentation of adrenarche is sexually dimorphic and modified by body adiposity. J Clin Endocrinol Metab. 2014;99(10):3889–3894.
  • Pereira A, Iñiguez G, Corvalan C, et al. High DHEAS is associated with earlier pubertal events in girls but not in boys. J Endocr Soc. 2017;1(7):800–808.
  • Utriainen P, Jääskeläinen J, Romppanen J, et al. Childhood metabolic syndrome and its components in premature adrenarche. J Clin Endocrinol Metab. 2007;92(11):4282–4285.
  • Kaya G, Yavas Abali Z, Bas F, et al. Body mass index at the presentation of premature adrenarche is associated with components of metabolic syndrome at puberty. Eur J Pediatr. 2018;177(11):1593–1601.
  • Samblas M, Milagro FI, Martínez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019;14(5):421–444.
  • Ling C, Rönn T. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2019;29(5):1028–1044.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 2003;33(S3):245–254.
  • Binder AM, Corvalan C, Mericq V, et al. Faster ticking rate of the epigenetic clock is associated with faster pubertal development in girls. Epigenetics. 2018;13(1):85–94.
  • Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dischildhood. 1969;44(235):291–303.
  • Pereira A, Garmendia ML, González D, et al. Breast bud detection: a validation study in the Chilean growth obesity cohort study. BMC Women’s Health. 2014;14(1):96.
  • Cediel G, Corvalán C, Aguirre C, et al. Serum 25-Hydroxyvitamin D associated with indicators of body fat and insulin resistance in prepubertal Chilean children. Int J Obesity. 2005;40(1):147–152.
  • de Onis M, Garza C, Victora CG, et al. The WHO Multicentre growth reference study: planning, study design, and methodology. Food Nutr Bull. 2004;25(1 Suppl):S15–26.
  • Gungor N, Saad R, Janosky J, et al. Validation of surrogate estimates of insulin sensitivity and insulin secretion in children and adolescents. J Paediatr. 2004;144(1):47–55.
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369.
  • Pidsley RY, Wong CC, Volta M, et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14(1):293.
  • Pidsley R, Zotenko E, Peters TJ, et al. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Bio. 2016;17(1):208.
  • Du P, Zhang X, Huang CC, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinf. 2010;11(1):587.
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012;13(1):86.
  • Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300.
  • Guintivano J, Shabalin AA, Chan RF, et al. Test-statistic inflation in methylome-wide association studies. Epigenetics. 2020;15(11):1163–1166.
  • Ubba V, Soni UK, Chadchan S, et al. RHOG-DOCK1-RAC1 signaling axis is perturbed in DHEA-induced polycystic ovary in rat model. Reprod Sci. 2017;24(5):738–752.
  • Ustinova M, Ansone L, Silamikelis I, et al. Whole-blood transcriptome profiling reveals signatures of metformin and its therapeutic response. PLoS ONE. 2020;15(8):e0237400. DOI:10.1371/journal.pone.0237400
  • Wu Y, Wang W, Jiang W, et al. An investigation of obesity susceptibility genes in Northern han Chinese by targeted resequencing. Medicine. 2017;96(7):e6117.
  • Scholl UI, Stölting G, Nelson-Williams C, et al. Recurrent gain of function mutation in calcium channel CACNA1H causes early-onset hypertension with primary aldosteronism. Elife. 2015;4:e06315.
  • Daniil G, Fernandes-Rosa FL, Chemin J, et al. CACNA1H mutations are associated with different forms of primary aldosteronism. EBioMedicine. 2016;13:225–236.
  • Nanba K, Blinder AR, Rege J, et al. Somatic CACNA1H mutation as a cause of aldosterone-producing adenoma. Hypertension. 2020;75(3):645–649. DOI:10.1161/HYPERTENSIONAHA.119.14349
  • Wang D, Wang W, Liang Q, et al. DHEA-induced ovarian hyperfibrosis is mediated by TGF-β signaling pathway. J Ovarian Res. 2018;11(1):6.
  • Zhang H, Li A, Zhang W, et al. High glucose-induced cytoplasmic translocation of Dnmt3a contributes to CTGF hypo-methylation in mesangial cells. Biosci Rep. 2016;36(4):e00362.
  • Vaittinen M, Kaminska D, Käkelä P, et al. Downregulation of CPPED1 expression improves glucose metabolism in vitro in adipocytes. Diabetes. 2013;62(11):3747–3750.
  • Oelsner KT, Guo Y, To SB, et al. Maternal BMI as a predictor of methylation of obesity-related genes in saliva samples from preschool-age Hispanic children at-risk for obesity. BMC Genomics. 2017;18(1):57.
  • Wang WJ, Huang R, Zheng T, et al. Genome-wide placental gene methylations in gestational diabetes mellitus, fetal growth and metabolic health biomarkers in cord blood. Front Endocrinol. 2022;13:875180.
  • Eini F, Novin MG, Joharchi K, et al. Intracytoplasmic oxidative stress reverses epigenetic modifications in polycystic ovary syndrome. Reprod Fertil Dev. 2017;29(12):2313–2323.
  • Eini F, Bidadkosh A, Nazarian H, et al. Thymoquinone reduces intracytoplasmic oxidative stress and improves epigenetic modification in polycystic ovary syndrome mice oocytes, during in-vitro maturation. Mol Reprod Dev. 2019;86(8):1053–1066.
  • Qu F, Wang FF, Yin R, et al. Molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J Mol Med (Berl). 2012;90(8):911–923. DOI:10.1007/s00109-012-0881-4
  • Salinas I, Sinha N, Sen A. Androgen-induced epigenetic modulations in the ovary. J Endocrinol. 2021;249(3):R53–64.
  • Pallotti F, Senofonte G, Konstantinidou F, et al. Epigenetic effects of gender-affirming hormone treatment: a pilot study of the ESR2 promoter’s methylation in AFAB People. Biomedicines. 2022;10(2):459. DOI:10.3390/biomedicines10020459
  • Lax E, Warhaftig G, Ohana D, et al. A DNA methylation signature of addiction in T cells and its reversal with DHEA intervention. Front Mol Neurosci. 2018;11:322.
  • Gravina GL, Marampon F, Piccolella M, et al. Hormonal therapy promotes hormone-resistant phenotype by increasing DNMT activity and expression in prostate cancer models. Endocrinology. 2011;152(12):4550–4561. DOI:10.1210/en.2011-1056
  • Crujeiras AB, Diaz-Lagares A, Sandoval J, et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients. Sci Rep. 2017;7(1):41903. DOI:10.1038/srep41903
  • Chiang CC, Lin GL, Yang SY, et al. PCDHB15 as a potential tumor suppressor and epigenetic biomarker for breast cancer. Oncol Lett. 2022;23(4):117. DOI:10.3892/ol.2022.13237
  • Zhang H, Cai X, Yi B, et al. Correlation of CTGF gene promoter methylation with CTGF expression in type 2 diabetes mellitus with or without nephropathy. Mol Med Rep. 2014;9(6):2138–2144.
  • Shi C, Li G, Tong Y, et al. Role of CTGF gene promoter methylation in the development of hepatic fibrosis. Am J Transl Res. 2016;8(1):125–132.
  • Zhang L, Zhao F, Yang C, et al. Hypomethylation of CTGF promoter in placenta and peripheral blood of pre-eclampsia women. Reprod Sci. 2020;27(2):468–476.
  • Pereira A, Merino PM, Santos JL, et al. High DHEAS in girls and metabolic features throughout pubertal maturation. Clinical Endocrinol. 2022;96(3):419–427.
  • Liimatta J, Utriainen P, Laitinen T, et al. Cardiometabolic risk profile among young adult females with a history of premature adrenarche. J Endocr Soc. 2019;3(10):1771–1783.
  • Clark PM, Hindmarsh PC, Shiell AW, et al. Size at birth and adrenocortical function in childhood. Clinical Endocrinol. 1996;45(6):721–726.
  • Ong KK, Potau N, Petry CJ, et al. Opposing influences of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J Clin Endocrinol Metab. 2004;89(6):2647–2651. DOI:10.1210/jc.2003-031848.
  • Francois I, de Zegher F, De Zegher F. Adrenarche and fetal growth. Pediat Res. 1997;41(3):440–442.