3,860
Views
1
CrossRef citations to date
0
Altmetric
Research Paper

A meta-analysis of epigenome-wide association studies on pregnancy vitamin B12 concentrations and offspring DNA methylation

, , , , , , , , , , , , , , , , , , , , , , , & ORCID Icon show all
Article: 2202835 | Received 16 Jul 2022, Accepted 06 Jan 2023, Published online: 24 Apr 2023

References

  • Allen LH, Miller JW, de Groot L, et al. Biomarkers of Nutrition for Development (BOND): vitamin B-12 Review. J Nutr. 2018;148(suppl_4):1995S–2027S. DOI:10.1093/jn/nxy201
  • Miliku K, Mesu A, Franco OH, et al. Maternal and fetal folate, vitamin B12 and homocysteine concentrations and childhood kidney outcomes. Am J Kidney Dis. 2018;69(4):521–24.
  • Krikke GG, Grooten IJ, Vrijkotte TGM, et al. Vitamin B 12 and folate status in early pregnancy and cardiometabolic risk factors in the offspring at age 5-6 years: findings from the ABCD multi-ethnic birth cohort. BJOG. 2016;123(3):384–392.
  • Rogne T, Tielemans MJ, Chong MF, et al. Associations of maternal vitamin B12 concentration in pregnancy with the risks of preterm birth and low birth weight: a systematic review and meta-analysis of individual participant data. Am J Epidemiol. 2017;185(3):212–223. DOI:10.1093/aje/kww212
  • Yajnik CS, Deshpande SS, Jackson AA, et al. Vitamin B12 and folate concentrations during pregnancy and insulin resistance in the offspring: the Pune Maternal Nutrition Study. Diabetologia. 2008;51:29–38.
  • Rush EC, Katre P, Yajnik CS. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease. Eur J Clin Nutr. 2014;68(1):2–7.
  • Monasso GS, Santos S, Geurtsen ML, et al. Associations of early pregnancy and neonatal circulating folate, vitamin B-12 and homocysteine concentrations with cardiometabolic risk factors in children at 10 y of age. J Nutr. 2021;151(6):1628–1636.
  • Dominguez-Salas P, Cox SE, Prentice AM, et al. Maternal nutritional status, C1 metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc. 2012;71(1):154–165.
  • Murphy MM, Molloy AM, Ueland PM, et al. Longitudinal study of the effect of pregnancy on maternal and fetal cobalamin status in healthy women and their offspring. J Nutr. 2007;137(8):1863–1867. DOI:10.1093/jn/137.8.1863
  • McKay JA, Groom A, Potter C, et al. Genetic and non-genetic influences during pregnancy on infant global and site specific DNA methylation: role for folate gene variants and vitamin B12. PLoS ONE. 2012;7(3):e33290.
  • Ba Y, Yu H, Liu F, et al. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood. Eur J Clin Nutr. 2011;65(4):480–485. DOI:10.1038/ejcn.2010.294
  • Caramaschi D, Sharp GC, Nohr E, et al. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Hum Mol Genet. 2017;26(15):3001–3013. DOI:10.1093/hmg/ddx164
  • Joubert BR, den Dekker HT, Felix JF, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;10(7):10577. DOI:10.1038/ncomms10577
  • Felix JF, Joubert BR, Baccarelli AA, et al. Cohort profile: pregnancy and Childhood Epigenetics (PACE) consortium. Int J Epidemiol. 2018;47(1):22–3u. DOI:10.1093/ije/dyx190
  • Boyd A, Golding J, Macleod J, et al. Cohort Profile: the ‘children of the 90s’–the index offspring of the Avon Longitudinal Study of Parents and Children. Int J Epidemiol. 2013;42(1):111–127. DOI:10.1093/ije/dys064
  • Fraser A, Macdonald-Wallis C, Tilling K, et al. Cohort profile: the Avon Longitudinal Study of Parents and Children: aLSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110. DOI:10.1093/ije/dys066
  • Guxens M, Ballester F, Espada M, et al. Cohort Profile: the INMA—INfancia y Medio Ambiente—(Environment and Childhood) Project. Int J Epidemiol. 2012;41(4):930–940. DOI:10.1093/ije/dyr054
  • Hertz-Picciotto I, Schmidt RJ, Walker CK, et al. A prospective study of environmental exposures and early biomarkers in autism spectrum disorder: design, protocols, and preliminary data from the marbles study. Environ Health Perspect. 2018;126(117004):117004. DOI:10.1289/EHP535
  • Magnus P, Birke C, Vejrup K, et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2016;45(2):382–388. DOI:10.1093/ije/dyw029
  • Magnus P, Irgens LM, Haug K, et al. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2006;35(5):1146–1150. DOI:10.1093/ije/dyl170
  • Kooijman MN, Kruithof CJ, Van DCM, et al. The Generation R Study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–1264. DOI:10.1007/s10654-016-0224-9
  • Tukey JW. Exploratory data analysis. Reading, Mass: Addison-Wesley Pub. Co.; 1977.
  • Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11(1):125. DOI:10.1186/s13148-019-0717-y
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.
  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–2191.
  • Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–209. DOI:10.4161/epi.23470
  • Naeem H, Wong NC, Chatterton Z, et al. Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array. BMC Genomics. 2014;15(1):51. DOI:10.1186/1471-2164-15-51
  • Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol. 1995;57(1):289–300.
  • Triche JT. Fdb.Infiniummethylation.hg19: annotation package for Illumina Infinium DNA methylation probes. R package version 2.2.0. 2014.
  • Surendran S, Adaikalakoteswari A, Saravanan P, et al. An update on vitamin B12-related gene polymorphisms and B12 status. Genes Nutr. 2018;13(1):2.
  • Grarup N, Sulem P, Sandholt CH, et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet. 2013;9(6):e1003530.
  • Houseman EA, Molitor J, Marsit CJ. Reference-free cell mixture adjustments in analysis of DNA methylation data. Bioinformatics. 2014;30(10):1431–1439.
  • Mandaviya PR, Aïssi D, Dekkers KF, et al. Homocysteine levels associate with subtle changes in leukocyte DNA methylation: an epigenome-wide analysis. Epigenomics. 2017;9(11):1403–1422. DOI:10.2217/epi-2017-0038
  • Amenyah SD, Hughes CF, Ward M, et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults-a systematic review and meta-analysis. Nutr Rev. 2020;78(8):647–666. DOI:10.1093/nutrit/nuz094
  • Küpers LK, Monnereau C, Sharp GC, et al. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat Commun. 2019;10(1):1893. DOI:10.1038/s41467-019-09671-3
  • Merid SK, Novoloaca A, Sharp GC, et al. Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age. Genome Med. 2020;12(1):25. DOI:10.1186/s13073-020-0716-9
  • Caramaschi D, Neumann A, Cardenas A, et al. Meta-analysis of epigenome-wide associations between DNA methylation at birth and childhood cognitive skills. Mol Psychiatry. 2022;27(4):2126–2135. DOI:10.1038/s41380-022-01441-w
  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2015;32(2):286–288.
  • Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, et al. Identification of blood autosomal cis-expression quantitative trait methylation (cis-eQtms) in children. bioRxiv. 2020:2020.11.05.368076.
  • Breeze CE, Reynolds AP, van Dongen J, et al. eFORGE v2.0: updated analysis of cell type-specific signal in epigenomic data. Bioinformatics. 2019;35(22):4767–4769. DOI:10.1093/bioinformatics/btz456
  • Finkelstein JL, Layden AJ, Stover PJ. Vitamin B-12 and perinatal pealth. Adv Nutr. 2015;6(5):552–563.
  • Schneider H, Miller RK. Receptor-mediated uptake and transport of macromolecules in the human placenta. Int J Dev Biol. 2010;2010(2–3):367–375.
  • Budday S, Steinmann P, Kuhl E. Physical biology of human brain development. Front Cell Neurosci. 2015;9(257). DOI:10.3389/fncel.2015.00257
  • Bergen NE, Jaddoe VWV, Timmermans S, et al. Homocysteine and folate concentrations in early pregnancy and the risk of adverse pregnancy outcomes: the Generation R Study. BJOG. 2012;119(6):739–751. DOI:10.1111/j.1471-0528.2012.03321.x
  • Mandaviya PR, Joehanes R, Brody J, et al. Association of dietary folate and vitamin B-12 intake with genome-wide DNA methylation in blood: a large-scale epigenome-wide association analysis in 5841 individuals. Am J Clin Nutr. 2019;110(2):437–450. DOI:10.1093/ajcn/nqz031
  • Stelzer G, Rosen R, Plaschkes I, et al. GeneCards – the human gene database. The GeneCards Suite: from Gene Data Mining to Disease Genome Sequence Analysis. Curr Protoc Bioinformatics. 2016;54(1):.1.30.1–1.3. DOI:10.1002/cpbi.5
  • Henjum S, Manger M, Hampel D, et al. Vitamin B12 concentrations in milk from Norwegian women during the six first months of lactation. Eur J Clin Nutr. 2020;74(5):749–756. DOI:10.1038/s41430-020-0567-x
  • Uhlén M, Fagerberg L, Hallström BM, et al. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. DOI:10.1126/science.1260419
  • Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014;221(3):R87.
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45. DOI:10.1093/nar/gkv1189
  • Spiers H, Hannon E, Schalkwyk LC, et al. Methylomic trajectories across human fetal brain development. Genome Res. 2015;25(3):338–352. DOI:10.1101/gr.180273.114
  • Battram T, Yousefi P, Crawford G, et al. The EWAS Catalog: a database of epigenome-wide association studies. Wellcome Open Res. 2022. http://www.ewascatalog.org/about/
  • Portales-Casamar E, Lussier AA, Jones MJ, et al. DNA methylation signature of human fetal alcohol spectrum disorder. Epigenetics Chromatin. 2016;9(1):25. DOI:10.1186/s13072-016-0074-4
  • Konířová J, Oltová J, Corlett A, et al. Modulated DISP3/PTCHD2 expression influences neural stem cell fate decisions. Sci Rep. 2017;7(1):41597. DOI:10.1038/srep41597
  • Zíková M, Konířová J, Ditrychová K, et al. DISP3 promotes proliferation and delays differentiation of neural progenitor cells. FEBS Lett. 2014;588(21):4071–4077.
  • Breton CV, Marsit CJ, Faustman E, et al. Small-Magnitude Effect Sizes in Epigenetic End Points are Important in Children’s Environmental Health Studies: the Children’s Environmental Health and Disease Prevention Research Center’s Epigenetics Working Group. Environ Health Perspect. 2017;125(4):511–526. DOI:10.1289/EHP595