2,348
Views
0
CrossRef citations to date
0
Altmetric
Review

Arabidopsis thaliana: a powerful model organism to explore histone modifications and their upstream regulations

, , , &
Article: 2211362 | Received 24 Nov 2022, Accepted 28 Apr 2023, Published online: 17 May 2023

References

  • Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521.
  • Martire S, Banaszynski LA. The roles of histone variants in fine-tuning chromatin organization and function. Nat Rev Mol Cell Biol. 2020;21(9):522–21.
  • Van Holde KE, Sahasrabuddhe CG, Shaw BR. A model for particulate structure in chromatin. Nucleic Acids Res. 1974;1(11):1579–1586.
  • Olins DE, Olins AL. Chromatin history: our view from the bridge. Nat Rev Mol Cell Biol. 2003;4(10):809–814.
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395.
  • Koster MJ, Snel B, Timmers HT. Genesis of chromatin and transcription dynamics in the origin of species. Cell. 2015;161(4):724–736.
  • Yun M, Wu J, Workman JL, et al. Readers of histone modifications. Cell Res. 2011;21(4):564–578.
  • Gillette TG, Hill JA. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116(7):1245–1253.
  • Handy DE, Castro R, Loscalzo J. Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation. 2011;123(19):2145–2156.
  • Portela A, Esteller M. Epigenetic modifications and human disease. Nature Biotechnol. 2010;28(10):1057–1068.
  • Simmons D. Epigenetic influence and disease. Nat Educ. 2008;1(1):6.
  • Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500.
  • Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Bio. 2019;20(1):245.
  • Alaskhar Alhamwe B, Khalaila R, Wolf J, et al. Histone modifications and their role in epigenetics of atopy and allergic diseases. Allergy Asthma Clin Immunol. 2018;14(1):39. DOI:10.1186/s13223-018-0259-4
  • Kuehner JN, Bruggeman EC, Wen Z, et al. Epigenetic regulations in neuropsychiatric disorders. Front Genet. 2019;10:268.
  • Ankeny RA, Leonelli S. What’s so special about model organisms? Stud Hist Philos Sci A. 2011;42(2):313–323.
  • Davis RH. The age of model organisms. Nat Rev Genet. 2004;5(1):69–76.
  • Bonini NM, Berger SL. The sustained impact of model organisms—in genetics and epigenetics. Genetics. 2017;205(1):1–4.
  • Anderson KV, Ingham PW. The transformation of the model organism: a decade of developmental genetics. Nature Genet. 2003;33(S3):285–293.
  • Halim MA, Tan FHP, Azlan A, et al. Ageing, drosophila melanogaster and epigenetics. Malays J Med Sci. 2020;27(3):7–19.
  • Blewitt M, Whitelaw E. The use of mouse models to study epigenetics. Cold Spring Harb Perspect Biol. 2013;5(11):a017939.
  • Herz HM, Madden LD, Chen Z, et al. The H3K27me3 demethylase dUTX is a suppressor of notch- and Rb-dependent tumors in Drosophila. Mol Cell Biol. 2010;30(10):2485–2497.
  • Copur Ö, Müller J. The histone H3-K27 demethylase Utx regulates HOX gene expression in Drosophila in a temporally restricted manner. Vol. 140. Cambridge, England: Development; 2013. pp. 3478–3485.
  • Shalaby NA, Sayed R, Zhang Q, et al. Systematic discovery of genetic modulation by Jumonji histone demethylases in Drosophila. Sci Rep. 2017;7(1):5240.
  • Dudley KJ, Revill K, Whitby P, et al. Genome-Wide Analysis in a Murine Dnmt1 Knockdown Model Identifies Epigenetically Silenced Genes in Primary Human Pituitary Tumors. In: Molecular cancer research. 2008;6(10):1567–1574.
  • Cooper A, Butto T, Hammer N, et al. Inhibition of histone deacetylation rescues phenotype in a mouse model of birk-barel intellectual disability syndrome. Nat Commun. 2020;11(1):480. DOI:10.1038/s41467-019-13918-4
  • Anreiter I, Kramer JM, Sokolowski MB Epigenetic mechanisms modulate differences in Drosophila foraging behavior. Proc Natl Acad Sci USA. 2017;114:12518–12523.
  • Ordway AJ, Teeters GM, Weasner BM, et al. A multi-gene knockdown approach reveals a new role for Pax6 in controlling organ number in Drosophila. Cambridge, England: Development; 2021. p. 148.
  • Bult CJ, Blake JA, Smith CL, et al. Mouse genome database (MGD) 2019. Nucleic Acids Res. 2019;47(D1):D801–d6.
  • Bastow R, Mylne JS, Lister C, et al. Vernalization requires epigenetic silencing of FLC by histone methylation. Nature. 2004;427(6970):164–167.
  • Heard E, Martienssen Robert A. Transgenerational epigenetic inheritance: myths and mechanisms. Cell. 2014;157(1):95–109.
  • Xavier MJ, Roman SD, Aitken RJ, et al. Transgenerational inheritance: how impacts to the epigenetic and genetic information of parents affect offspring health. Human Reproduction Update. 2019;25(5):519–541.
  • Liu F, Wang L, Perna F, et al. Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape. Nat Rev Cancer. 2016;16(6):359–372.
  • Zannas AS, Arloth J, Carrillo-Roa T, et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Bio. 2015;16(1):266. DOI:10.1186/s13059-015-0828-5
  • Tough DF, Tak PP, Tarakhovsky A, et al. Epigenetic drug discovery: breaking through the immune barrier. Nat Rev Drug Discov. 2016;15(12):835–853.
  • Bagot RC, Labonté B, Peña CJ, et al. Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin Neurosci. 2014;16(3):281–295.
  • Long HK, Sims D, Heger A, et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. Elife. 2013;2:e00348.
  • Radford EJ. Exploring the extent and scope of epigenetic inheritance. Nat Rev Endocrinol. 2018;14(6):345–355.
  • Fuchs J, Demidov D, Houben A, et al. Chromosomal histone modification patterns – from conservation to diversity. Trends Plant Sci. 2006;11(4):199–208.
  • Feng S, Jacobsen SE. Epigenetic modifications in plants: an evolutionary perspective. Curr Opin Plant Biol. 2011;14(2):179–186.
  • Rhee SY, Beavis W, Berardini TZ, et al. The Arabidopsis information resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res. 2003;31:224–228.
  • O’Malley RC, Barragan CC, Ecker JR. A user’s guide to the Arabidopsis T-DNA insertion mutant collections. Methods in molecular biology. In: Jose M. Alonso, Anna N. Stepanova, editors. Plant Functional Genomics. Vol. 1284. Clifton, NJ: Springer 2015pp. 323–342
  • Alonso JM, Stepanova AN, Leisse TJ, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science. 2003;301(5633):653–657. DOI:10.1126/science.1086391
  • Woody ST, Austin-Phillips S, Amasino RM, et al. The WiscDslox T-DNA collection: an Arabidopsis community resource generated by using an improved high-throughput T-DNA sequencing pipeline. J Plant Res. 2007;120(1):157–165.
  • Sessions A, Burke E, Presting G, et al. A high-throughput Arabidopsis reverse genetics system. Plant Cell. 2002;14(12):2985–2994. DOI:10.1105/tpc.004630
  • Pikaard CS, Mittelsten Scheid O. Epigenetic regulation in plants. Cold Spring Harb Perspect Biol. 2014;6(12):a019315.
  • Hauser MT, Aufsatz W, Jonak C, et al. Transgenerational epigenetic inheritance in plants. Biochim Biophys Acta. 2011;1809(8):459–468.
  • Pfluger J, Wagner D. Histone modifications and dynamic regulation of genome accessibility in plants. Curr Opin Plant Biol. 2007;10(6):645–652.
  • Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97–109.
  • Skinner MK, Guerrero-Bosagna C. Environmental signals and transgenerational epigenetics. Epigenomics. 2009;1(1):111–117.
  • Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis of vernalization: the central role of FLOWERING LOCUS C. Proc Natl Acad Sci USA. 2000;97:3753–3758.
  • De Lucia F, Crevillen P, Jones AME, et al. A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA. 2008;105:16831–16836.
  • Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC. Curr Biol. 2014;24(15):1793–1797.
  • Mariño-Ramírez L, Jordan IK, Landsman D. Multiple independent evolutionary solutions to core histone gene regulation. Genome Bio. 2006;7(12):R122.
  • Mariño-Ramírez L, Kann MG, Shoemaker BA, et al. Histone structure and nucleosome stability. Expert Rev Proteomics. 2005;2(5):719–729.
  • Bönisch C, Hake SB. Histone H2A variants in nucleosomes and chromatin: more or less stable? Nucleic Acids Res. 2012;40(21):10719–10741.
  • Stevens Kathryn M, Swadling Jacob B, Hocher A, et al. Histone variants in archaea and the evolution of combinatorial chromatin complexity. Proc Natl Acad Sci USA. 2020;117:33384–33395.
  • Joseph SR, Pálfy M, Hilbert L, et al. Competition between histone and transcription factor binding regulates the onset of transcription in zebrafish embryos. Elife. 2017;6:e23326.
  • Hyland EM, Cosgrove MS, Molina H, et al. Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol. 2005;25(22):10060–10070.
  • Talbert PB, Henikoff S. Histone variants at a glance. J Cell Sci. 2021;134(6):134.
  • Long M, Sun X, Shi W, et al. A novel histone H4 variant H4G regulates rDNA transcription in breast cancer. Nucleic Acids Res. 2019;47(16):8399–8409. DOI:10.1093/nar/gkz547
  • Waterborg JH. Evolution of histone H3: emergence of variants and conservation of post-translational modification sites 1 this article is part of special issue entitled asilomar chromatin and has undergone the journal’s usual peer review process. Biochem Cell Biol. 2012;90(1):79–95.
  • Szenker E, Ray-Gallet D, Almouzni G. The double face of the histone variant H3.3. Cell Res. 2011;21(3):421–434.
  • Qanmber G, Ali F, Lu L, et al. Identification of histone H3 (HH3) genes in Gossypium hirsutum revealed diverse expression during ovule development and stress responses. Genes (Basel). 2019;10(5):355.
  • Muhire BM, Booker MA, Tolstorukov MY. Non-neutral evolution of H3.3-encoding genes occurs without alterations in protein sequence. Sci Rep. 2019;9(1):8472.
  • Stroud H, Otero S, Desvoyes B, et al. Genome-wide analysis of histone H3.1 and H3.3 variants in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2012;109:5370–5375.
  • Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Molecular Cell. 2002;9(6):1191–1200.
  • Ramachandran S, Henikoff S. Replicating nucleosomes. Sci Adv. 2015;1(7):e1500587.
  • Schwartz BE, Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes & deve. 2005;19(7):804–814.
  • Tagami H, Ray-Gallet D, Almouzni G, et al. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell. 2004;116(1):51–61.
  • Jacob Y, Bergamin E, Donoghue MTA, et al. Selective methylation of histone H3 variant H3.1 regulates heterochromatin replication. Science. 2014;343(6176):1249–1253. DOI:10.1126/science.1248357
  • Almouzni G, Cedar H. Maintenance of epigenetic information. Csh Perspect Biol. 2016;8(5):a019372.
  • Mendiratta S, Gatto A, Almouzni G. Histone supply: multitiered regulation ensures chromatin dynamics throughout the cell cycle. J Cell Bio. 2019;218(1):39–54.
  • Shi L, Wen H, Shi X. The histone variant H3.3 in transcriptional regulation and human disease. J Mol Biol. 2017;429(13):1934–1945.
  • Clément C, Orsi GA, Gatto A, et al. High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nat Commun. 2018;9(1):3181. DOI:10.1038/s41467-018-05697-1
  • Piontkivska H, Rooney AP, Nei M. Purifying selection and birth-and-death evolution in the histone H4 gene family. Mol Biol Evol. 2002;19(5):689–697.
  • Probst AV, Desvoyes B, Gutierrez C. Similar yet critically different: the distribution, dynamics and function of histone variants. J Exp Bot. 2020;71(17):5191–5204.
  • Kliebenstein DJ, Lim JE, Landry LG, et al. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1. Plant Physiol. 2002;130(1):234–243.
  • Luque A, Collepardo-Guevara R, Grigoryev S, et al. Dynamic condensation of linker histone C-terminal domain regulates chromatin structure. Nucleic Acids Res. 2014;42(12):7553–7560.
  • Morales V, Richard-Foy H. Role of histone N-terminal tails and their acetylation in nucleosome dynamics. Mol Cell Biol. 2000;20(19):7230–7237.
  • Izzo A, Schneider R. Chatting histone modifications in mammals. Brief Funct Genomics. 2010;9(5–6):429–443.
  • Miller JL, Grant PA. The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell Biochem. 2013;61:289–317.
  • Bieluszewski T, Xiao J, Yang Y, et al. PRC2 activity, recruitment, and silencing: a comparative perspective. Trends Plant Sci. 2021;26(11):1186–1198.
  • Cui J, Zhang Z, Shao Y, et al. Genome-wide identification, evolutionary, and expression analyses of histone H3 variants in plants. Bio Med Res Int. 2015;2015:341598.
  • Sanders D, Qian S, Fieweger R, et al. Histone lysine-to-methionine mutations reduce histone methylation and cause developmental pleiotropy. Plant Physiol. 2017;173(4):2243–2252.
  • Sankaran SM, Gozani O. Characterization of H3.3K36M as a tool to study H3K36 methylation in cancer cells. Epigenetics. 2017;12(11):917–922.
  • Lowe BR, Maxham LA, Hamey JJ, et al. Histone H3 mutations: an updated view of their role in chromatin deregulation and cancer. Cancers (Basel). 2019;11(5):11.
  • Lam UTF, Tan BKY, Poh JJX, et al. Structural and functional specificity of H3K36 methylation. Epigenetics & Chromatin. 2022;15(1):17.
  • Kernohan KD, Grynspan D, Ramphal R, et al. H3.1 K36M mutation in a congenital-onset soft tissue neoplasm. Pediatric Blood & Cancer. 2017;64(12):64. DOI:10.1002/pbc.26633
  • Lewis PW, Müller MM, Koletsky MS, et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science. 2013;340(6134):857–861.
  • Chaouch A, Berlandi J, Chen CCL, et al. Histone H3.3 K27M and K36M mutations de-repress transposable elements through perturbation of antagonistic chromatin marks. Mol Cell. 2021;81(23):4876–90.e7. DOI:10.1016/j.molcel.2021.10.008
  • Zaghi M, Broccoli V, Sessa A. H3K36 methylation in neural development and associated diseases. Front Genet. 2020;10:10.
  • Wollmann H, Stroud H, Yelagandula R, et al. The histone H3 variant H3.3 regulates gene body DNA methylation in Arabidopsis thaliana. Genome Bio. 2017;18(1):94. DOI:10.1186/s13059-017-1221-3
  • Bush KM, Yuen BT, Barrilleaux BL, et al. Endogenous mammalian histone H3.3 exhibits chromatin-related functions during development. Epigenetics & Chromatin. 2013;6(1):7.
  • Sakai A, Schwartz BE, Goldstein S, et al. Transcriptional and developmental functions of the H3.3 histone variant in drosophila. Curr Biol. 2009;19(21):1816–1820.
  • Jang C-W, Shibata Y, Starmer J, et al. Histone H3.3 maintains genome integrity during mammalian development. Genes & deve. 2015;29(13):1377–1392.
  • Lewis EB. A gene complex controlling segmentation in Drosophila. Nature. 1978;276(5688):565–570.
  • Whitcomb SJ, Basu A, Allis CD, et al. Polycomb Group proteins: an evolutionary perspective. Trends Genet. 2007;23(10):494–502.
  • Shaver S, Casas-Mollano JA, Cerny RL, et al. Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics. 2010;5(4):301–312.
  • Gerlt JA, Babbitt PC. Can sequence determine function? Genome Bio. 2000;1(5):reviews0005.1.
  • Tian W, Skolnick J. How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol. 2003;333(4):863–882.
  • Chua HN, Sung W-K, Wong L. An efficient strategy for extensive integration of diverse biological data for protein function prediction. Bioinformatics. 2007;23(24):3364–3373.
  • Cock JM, McCormick S. A large family of genes that share homology withCLAVATA3. Plant Physiol. 2001;126(3):939–942.
  • Saudek V, Fraternali F. Cystinosin, MPDU1, sWEETs and KDELR belong to a well-defined protein family with putative function of cargo receptors involved in vesicle trafficking. PLoS ONE. 2012;7(2):e30876.
  • Ringrose L, Paro R. Polycomb/Trithorax response elements and epigenetic memory of cell identity. Vol. 134. England): Development (Cambridge; 2007. pp. 223–232.
  • Simon JA, Kingston RE. Mechanisms of Polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009;10(10):697–708.
  • Levine Stuart S, Weiss A, Erdjument-Bromage H, et al. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol Cell Biol. 2002;22(17):6070–6078.
  • Laugesen A, Højfeldt JW, Helin K. Molecular mechanisms directing PRC2 recruitment and H3K27 methylation. Mol Cell. 2019;74(1):8–18.
  • Uckelmann M, Davidovich C. Not just a writer: pRC2 as a chromatin reader. Biochem Soc Trans. 2021;49(3):1159–1170.
  • Lavarone E, Barbieri CM, Pasini D. Dissecting the role of H3K27 acetylation and methylation in PRC2 mediated control of cellular identity. Nat Commun. 2019;10(1):1679.
  • Fischer S, Weber LM, Liefke R. Evolutionary adaptation of the Polycomb repressive complex 2. Epigenetics & Chromatin. 2022;15(1):7.
  • Wang L, Joshi P, Miller EL, et al. A role for monomethylation of histone H3-K27 in Gene Activity in Drosophila. Genetics. 2018;208(3):1023–1036.
  • Wiles ET, Selker EU. H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev. 2017;43:31–37.
  • Müller J, Hart CM, Francis NJ, et al. Histone methyltransferase activity of a drosophila polycomb group repressor complex. Cell. 2002;111(2):197–208.
  • Chammas P, Mocavini I, Di Croce L. Engaging chromatin: pRC2 structure meets function. Br J Cancer. 2020;122(3):315–328.
  • Murzina NV, Pei X-Y, Zhang W, et al. Structural basis for the recognition of histone H4 by the histone-chaperone RbAp46. Structure. 2008;16(7):1077–1085. DOI:10.1016/j.str.2008.05.006
  • Nekrasov M, Wild B, Müller J. Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep. 2005;6(4):348–353.
  • Ciferri C, Lander GC, Maiolica A, et al. Molecular architecture of human polycomb repressive complex 2. Elife. 2012;1:e00005.
  • Vijayanathan M, Trejo-Arellano MG, Mozgová I. Polycomb repressive complex 2 in eukaryotes—an evolutionary perspective. Epigenomes. 2022;6(1):6.
  • Cao R, Wang L, Wang H, et al. Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science. 2002;298(5595):1039–1043.
  • Czermin B, Melfi R, McCabe D, et al. Drosophila enhancer of zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal polycomb sites. Cell. 2002;111(2):185–196.
  • Schwartz YB, Pirrotta V. Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet. 2007;8(1):9–22.
  • Pien S, Grossniklaus U. Polycomb group and trithorax group proteins in Arabidopsis. Biochimica Et Biophysica Acta (BBA) - Gene Struct and Expression. 2007;1769(5–6):375–382.
  • Yang Y, Li G. Post-translational modifications of PRC2: signals directing its activity. Epigenetics & Chromatin. 2020;13(1):47.
  • Guo Y, Zhao S, Wang GG. Polycomb Gene Silencing Mechanisms: pRC2 Chromatin Targeting, H3K27me3 ‘ReadoutAnd Phase Separation-Based Compaction. Trends in Genet: TIG. 2021;37(6):547–565.
  • Aranda S, Mas G, Di Croce L. Regulation of gene transcription by Polycomb proteins. Sci Adv. 2015;1(11):e1500737.
  • Xiao J, Jin R, Yu X, et al. Cis and trans determinants of epigenetic silencing by Polycomb repressive complex 2 in Arabidopsis. Nature Genet. 2017;49(10):1546–1552. DOI:10.1038/ng.3937
  • Sing A, Pannell D, Karaiskakis A, et al. A vertebrate polycomb response element governs segmentation of the posterior hindbrain. Cell. 2009;138(5):885–897.
  • Woo CJ, Kharchenko PV, Daheron L, et al. A region of the human HOXD cluster that confers polycomb-group responsiveness. Cell. 2010;140(1):99–110.
  • Lodha M, Marco CF, Timmermans MC. The ASYMMETRIC LEAVES complex maintains repression of KNOX homeobox genes via direct recruitment of Polycomb-repressive complex2. Genes & deve. 2013;27(6):596–601.
  • Berger N, Dubreucq B, Roudier F, et al. Transcriptional regulation of Arabidopsis LEAFY COTYLEDON2 involves RLE, a cis-element that regulates trimethylation of histone H3 at lysine-27. Plant Cell. 2011;23(11):4065–4078.
  • De S, Mitra A, Cheng Y, et al. Formation of a polycomb-domain in the absence of strong polycomb response elements. PLoS Genet. 2016;12(7):e1006200.
  • Schuettengruber B, Chourrout D, Vervoort M, et al. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–745.
  • Parreno V, Martinez A-M, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res. 2022;32(3):231–253.
  • Blackledge NP, Klose RJ. The molecular principles of gene regulation by Polycomb repressive complexes. Nat Rev Mol Cell Biol. 2021;22(12):815–833.
  • Blackledge NP, Rose NR, Klose RJ. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol. 2015;16(11):643–649.
  • Davidovich C, Cech TR. The recruitment of chromatin modifiers by long noncoding RNAs: lessons from PRC2. RNA. 2015;21(12):2007–2022.
  • Heo JB, Sung S. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science. 2011;331(6013):76–79.
  • Tian Y, Zheng H, Zhang F, et al. PRC2 recruitment and H3K27me3 deposition at FLC require FCA binding of COOLAIR. Sci Adv. 2019;5(4):eaau7246.
  • Kim D-H, Sung S. Vernalization-triggered intragenic chromatin loop formation by long noncoding RNAs. Dev Cell. 2017;40(3):302–12.e4.
  • Alecki C, Chiwara V, Sanz LA, et al. RNA-DNA strand exchange by the drosophilapolycomb complex PRC2. Nat Commun. 2020;11(1):1781.
  • Skourti-Stathaki K, Triglia ET, Warburton M, et al. R-loops enhance polycomb repression at a subset of developmental regulator genes. Molecular Cell. 2019;73(5):930–45. e4.
  • Ariel F, Lucero L, Christ A, et al. R-Loop mediated trans action of the APOLO long noncoding RNA. Molecular Cell. 2020;77(5):1055–65.e4. DOI:10.1016/j.molcel.2019.12.015
  • Nekrasov M, Klymenko T, Fraterman S, et al. Pcl-PRC2 is needed to generate high levels of H3-K27 trimethylation at Polycomb target genes. Embo J. 2007;26(18):4078–4088.
  • Healy E, Mucha M, Glancy E, et al. PRC2.1 and PRC2.2 synergize to coordinate H3K27 trimethylation. Molecular Cell. 2019;76(3):437–52.e6. DOI:10.1016/j.molcel.2019.08.012
  • Kim D-H, Sung S. Polycomb-mediated gene silencing in Arabidopsis thaliana. Mol Cells. 2014;37(12):841–850.
  • Grossniklaus U, Paro R. Transcriptional silencing by polycomb-group proteins. Csh Perspect Biol. 2014;6(11):6.
  • Godwin J, Farrona S. The importance of networking: plant polycomb repressive complex 2 and its interactors. Epigenomes. 2022;6(1):6.
  • Zheng B, Chen X. Dynamics of histone H3 lysine 27 trimethylation in plant development. Curr Opin Plant Biol. 2011;14(2):123–129.
  • Baile F, Gómez-Zambrano Á, Calonje M. Roles of Polycomb complexes in regulating gene expression and chromatin structure in plants. Plant Commun. 2022;3(1):100267.
  • Feng J, Lu J. LHP1 could act as an activator and a repressor of transcription in plants. Front Plant Sci. 2017;8. DOI:10.3389/fpls.2017.02041
  • Schoelz JM, Riddle NC. Functions of HP1 proteins in transcriptional regulation. Epigenetics & Chromatin. 2022;15(1):14.
  • Costa S, Dean C. Storing memories: the distinct phases of Polycomb-mediated silencing of Arabidopsis FLC. Biochem Soc Trans. 2019;47(4):1187–1196.
  • Walker E, Chang WY, Hunkapiller J, et al. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell. 2010;6(2):153–166.
  • Sarma K, Margueron R, Ivanov A, et al. Ezh2 Requires PHF1 to Efficiently Catalyze H3 Lysine 27 Trimethylation in vivo. Mol Cell Biol. 2008;28(8):2718–2731.
  • Kralemann LEM, Liu S, Trejo-Arellano MS, et al. Removal of H2Aub1 by ubiquitin-specific proteases 12 and 13 is required for stable Polycomb-mediated gene repression in Arabidopsis. Genome Biol. 2020;21(1):144.
  • Gahan JM, Rentzsch F, Schnitzler CE The genetic basis for PRC1 complex diversity emerged early in animal evolution. Proc Natl Acad Sci USA. 2020;117:22880–22889.
  • Fischle W, Wang Y, Jacobs SA, et al. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes & deve. 2003;17(15):1870–1881.
  • Cheutin T, Cavalli G. Loss of PRC1 induces higher-order opening of Hox loci independently of transcription during Drosophila embryogenesis. Nat Commun. 2018;9(1):3898.
  • Kang H, McElroy KA, Jung YL, et al. Sex comb on midleg (Scm) is a functional link between PcG-repressive complexes in Drosophila. Genes & deve. 2015;29(11):1136–1150.
  • Zhang X, Germann S, Blus BJ, et al. The Arabidopsis LHP1 protein colocalizes with histone H3 Lys27 trimethylation. Nat Struct Mol Biol. 2007;14(9):869–871.
  • Kahn TG, Dorafshan E, Schultheis D, et al. Interdependence of PRC1 and PRC2 for recruitment to polycomb response elements. Nucleic Acids Res. 2016;44:10132–10149.
  • Schuettengruber B, Martinez A-M, Iovino N, et al. Trithorax group proteins: switching genes on and keeping them active. Nat Rev Mol Cell Biol. 2011;12(12):799–814.
  • Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harbor Perspect Biol. 2014;6(10):a019349.
  • Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics. 2017;206(4):1699–1725.
  • Kennison JA. The polycomb and trithorax group proteins of drosophila: trans-regulators of homeotic gene function. Annu Rev Genet. 1995;29(1):289–304.
  • Kennison JA. Introduction to Trx-G and Pc-G genes. Methods Enzymol. 2004;377:61–70.
  • Alvarez-Venegas R, Avramova Z. Two Arabidopsis homologs of the animal trithorax genes: a new structural domain is a signature feature of the trithorax gene family. Gene. 2001;271(2):215–221.
  • Alvarez-Venegas R, Pien S, Sadder M, et al. ATX-1, an Arabidopsis homolog of trithorax, activates flower homeotic genes. Curr Biol. 2003;13(8):627–637.
  • Hanson RD, Hess JL, Yu BD, et al. Mammalian Trithorax and Polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA. 1999; 96:14372–14377.
  • Nislow C, Ray E, Pillus L. SET1, a yeast member of the trithorax family, functions in transcriptional silencing and diverse cellular processes. ?Mol Biol Cell. 1997;8(12):2421–2436.
  • Tang L, Nogales E, Ciferri C. Structure and function of SWI/SNF chromatin remodeling complexes and mechanistic implications for transcription. Prog Biophys Mol Biol. 2010;102(2–3):122–128.
  • Dillon SC, Zhang X, Trievel RC, et al. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol. 2005;6(8):227.
  • Herz H-M, Garruss A, Shilatifard A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci. 2013;38(12):621–639.
  • Gu Y, Nakamura T, Alder H, et al. The t (4; 11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell. 1992;71(4):701–708.
  • Bantignies F, Goodman RH, Smolik SM. Functional interaction between the coactivator Drosophila CREB-binding protein and ASH1, a member of the trithorax group of chromatin modifiers. Mol Cell Biol. 2000;20(24):9317–9330.
  • Eissenberg JC, Shilatifard A. Histone H3 lysine 4 (H3K4) methylation in development and differentiation. Dev Biology. 2010;339(2):240–249.
  • Pu L, Sung ZR. PcG and trxG in plants – friends or foes. Trends Genet. 2015;31(5):252–262.
  • Peterson CL, Tamkun JW. The SWI-SNF complex: a chromatin remodeling machine? Trends Biochem Sci. 1995;20(4):143–146.
  • Zhang X, Bernatavichute YV, Cokus S, et al. Genome-wide analysis of mono-, di- and trimethylation of histone H3 lysine 4 in Arabidopsis thaliana. Genome Biol. 2009;10(6):R62.
  • Oh S, Park S, van Nocker S. Genic and global functions for Paf1C in chromatin modification and gene expression in Arabidopsis. PLoS Genet. 2008;4(8):e1000077.
  • Jiang D, Kong NC, Gu X, et al. Arabidopsis COMPASS-like complexes mediate histone H3 lysine-4 trimethylation to control floral transition and plant development. PLoS Genet. 2011;7(3):e1001330.
  • Wang Y, Ding Z, Liu X, et al. Architecture and subunit arrangement of the complete Saccharomyces cerevisiae COMPASS complex. Sci Rep. 2018;8(1):17405.
  • Worden EJ, Zhang X, Wolberger C. Structural basis for COMPASS recognition of an H2B-ubiquitinated nucleosome. Elife. 2020;9:e53199.
  • Dou Y, Milne TA, Ruthenburg AJ, et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol. 2006;13(8):713–719.
  • Cenik BK, Shilatifard A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 2021;22(1):38–58.
  • Xiao J, Lee U-S, Wagner D. Tug of war: adding and removing histone lysine methylation in Arabidopsis. Curr Opin Plant Biol. 2016;34:41–53.
  • Cartagena JA, Matsunaga S, Seki M, et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biology. 2008;315(2):355–368.
  • Berr A, McCallum EJ, Ménard R, et al. Arabidopsis SET DOMAIN GROUP2 is required for H3K4 trimethylation and is crucial for both sporophyte and gametophyte development. Plant Cell. 2010;22(10):3232–3248.
  • Shilatifard A. The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem. 2012;81(1):65–95.
  • Molitor AM, Bu Z, Yu Y, et al. Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet. 2014;10(1):e1004091.
  • Lee WY, Lee D, Chung WI, et al. Arabidopsis ING and Alfin1‐like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers. Plant J. 2009;58(3):511–524.
  • Lu F, Cui X, Zhang S, et al. JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Res. 2010;20(3):387–390.
  • Yang H, Mo H, Fan D, et al. Overexpression of a histone H3K4 demethylase, JMJ15, accelerates flowering time in Arabidopsis. Plant Cell Rep. 2012;31(7):1297–1308.
  • Yang H, Han Z, Cao Y, et al. A companion cell–dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet. 2012;8(4):e1002664.
  • Kooistra SM, Helin K. Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol. 2012;13(5):297–311.
  • Nawkar GM, Kang CH, Maibam P, et al. HY5, a positive regulator of light signaling, negatively controls the unfolded protein response in Arabidopsis. Proc Natl Acad Sci USA. 2017;114:2084–2089.
  • Pastor-Cantizano N, Ko DK, Angelos E, et al. Functional diversification of ER stress responses in Arabidopsis. Trends Biochem Sci. 2020;45(2):123–136.
  • Zhao X, Li J, Lian B, et al. Global identification of Arabidopsis lncRnas reveals the regulation of MAF4 by a natural antisense RNA. Nat Commun. 2018;9(1):5056.
  • Franks TM, McCloskey A, Shokhirev MN, et al. Nup98 recruits the Wdr82–Set1A/COMPASS complex to promoters to regulate H3K4 trimethylation in hematopoietic progenitor cells. Genes & deve. 2017;31(22):2222–2234.
  • Wu JI, Lessard J, Crabtree GR. Understanding the words of chromatin regulation. Cell. 2009;136(2):200–206.
  • Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1(5):e1500447.
  • Masliah-Planchon J, Bièche I, Guinebretière J-M, et al. SWI/SNF chromatin remodeling and human malignancies. Annu Rev Pathol. 2015;10(1):145–171.
  • Dingwall AK, Beek SJ, McCallum CM, et al. The Drosophila snr1 and brm proteins are related to yeast SWI/SNF proteins and are components of a large protein complex. ?Mol Biol Cell. 1995;6(7):777–791.
  • Stern M, Jensen R, Herskowitz I. Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol. 1984;178(4):853–868.
  • Wang W, Côté J, Xue Y, et al. Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. Embo J. 1996;15(19):5370–5382. DOI:10.1002/j.1460-2075.1996.tb00921.x
  • Centore RC, Sandoval GJ, Soares LMM, et al. Mammalian SWI/SNF Chromatin Remodeling Complexes: emerging Mechanisms and Therapeutic Strategies. Trends Genet. 2020;36(12):936–950.
  • Mittal P, Roberts CWM. The SWI/SNF complex in cancer — biology, biomarkers and therapy. Nat Rev Clin Oncol. 2020;17(7):435–448.
  • Reyes JC. The many faces of plant SWI/SNF complex. Mol Plant. 2014;7(3):454–458.
  • Tillib S, Petruk S, Sedkov Y, et al. Trithorax- and Polycomb-group response elements within an Ultrabithorax transcription maintenance unit consist of closely situated but separable sequences. Mol Cell Biol. 1999;19(7):5189–5202.
  • Müller J, Kassis JA. Polycomb response elements and targeting of Polycomb group proteins in Drosophila. Curr Opin Genet Dev. 2006;16(5):476–484.
  • Kassis JA, Brown JL. Polycomb group response elements in Drosophila and vertebrates. Adv Genet. 2013;81:83–118.
  • Tie F, Banerjee R, Stratton CA, et al. CBP-mediated acetylation of histone H3 lysine 27 antagonizes drosophila polycomb silencing. Development. 2009;136(18):3131–3141.
  • Yuan W, Xu M, Huang C, et al. H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem. 2011;286(10):7983–7989.
  • Schmähling S, Meiler A, Lee Y, et al. Regulation and function of H3K36 di-methylation by the trithorax-group protein complex AMC. Vol. 145. England): Development (Cambridge; 2018.
  • Tie F, Banerjee R, Fu C, et al. Polycomb inhibits histone acetylation by CBP by binding directly to its catalytic domain. Proc Natl Acad Sci USA. 2016;113:E744–53.
  • Alvarez-Venegas R. Regulation by polycomb and trithorax group proteins in Arabidopsis. The Arabidopsis Book. Vol. 8. Washington, DC: PubMed Central; 2010. p. e0128.
  • Clapier CR, Iwasa J, Cairns BR, et al. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18(7):407–422.
  • Giaimo BD, Ferrante F, Herchenröther A, et al. The histone variant H2A.Z in gene regulation. Epigenetics & Chromatin. 2019;12(1):37.
  • Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–673.
  • Cedar H, Bergman Y. Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet. 2009;10(5):295–304.
  • Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133.
  • X-J H, Chen T, Zhu J-K. Regulation and function of DNA methylation in plants and animals. Cell Res. 2011;21(3):442–465.
  • Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.
  • He L, Huang H, Bradai M, et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development. Nat Commun. 2022;13(1):1335.
  • Stroud H, Do T, Du J, et al. Non-CG methylation patterns shape the epigenetic landscape in Arabidopsis. Nat Struct Mol Biol. 2014;21(1):64–72.
  • Zilberman D, Gehring M, Tran RK, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 2007;39(1):61–69.
  • Bewick AJ, Schmitz RJ. Gene body DNA methylation in plants. Curr Opin Plant Biol. 2017;36:103–110.
  • Cavalli G, Heard E. Advances in epigenetics link genetics to the environment and disease. Nature. 2019;571(7766):489–499.
  • Molina-Serrano D, Kyriakou D, Kirmizis A. Histone modifications as an intersection between diet and longevity. Front Genet. 2019;10:192.
  • Rugowska A, Starosta A, Konieczny P. Epigenetic modifications in muscle regeneration and progression of Duchenne muscular dystrophy. Clin Epigenetics. 2021;13(1):13.
  • Casas E, Vavouri T. Mechanisms of epigenetic inheritance of variable traits through the germline. Reproduction (Cambridge, England. Reproduction. 2020;159(6):R251–r63.
  • Deevy O, Bracken AP. PRC2 functions in development and congenital disorders. Development. 2019;146(19). DOI:10.1242/dev.181354
  • Kerppola TK. Polycomb group complexes – many combinations, many functions. Trends Cell Biol. 2009;19(12):692–704.
  • Katz DJ, Edwards TM, Reinke V, et al. A C. elegans LSD1 demethylase contributes to germline immortality by reprogramming epigenetic memory. Cell. 2009;137(2):308–320.
  • Xiao Y, Bedet C, Robert VJP, et al. Caenorhabditis elegans chromatin-associated proteins SET-2 and ASH-2 are differentially required for histone H3 Lys 4 methylation in embryos and adult germ cells. PNAS. 2011;108(20):8305–8310.
  • Mendenhall EM, Bernstein BE. Chromatin state maps: new technologies, new insights. Curr Opin Genet Dev. 2008;18(2):109–115.
  • Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development. 2009;136(21):3531–3542.
  • Lee I, Amasino RM. Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol. 1995;108(1):157–162.
  • Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11(5):949–956.
  • Lee J, Amasino RM. Two FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis. Nat Commun. 2013;4(1):2186.
  • Kim DH, Sung S. Genetic and epigenetic mechanisms underlying vernalization. Arabidopsis Book. 2014;12:e0171.
  • Sung S, Amasino RM. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature. 2004;427(6970):159–164.
  • Swiezewski S, Liu F, Magusin A, et al. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature. 2009;462(7274):799–802.
  • Cao R, Wang H, He J, et al. Role of hPHF1 in H3K27 methylation and Hox gene silencing. Mol Cell Biol. 2008;28(5):1862–1872.
  • Inouye C, Remondelli P, Karin M, et al. Isolation of a cDNA encoding a metal response element binding protein using a novel expression cloning procedure: the one hybrid system. DNA Cell Biol. 1994;13(7):731–742.
  • Coulson M, Robert S, Eyre HJ, et al. The identification and localization of a human gene with sequence similarity to Polycomblike of Drosophila melanogaster. Genomics. 1998;48(3):381–383.
  • Wang S, Robertson GP, Zhu J. A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. Gene. 2004;343(1):69–78.
  • Lee J, Yun JY, Zhao W, et al. A methyltransferase required for proper timing of the vernalization response in Arabidopsis. Proc Natl Acad Sci USA. 2015;112:2269–2274.
  • Sahr T, Adam T, Fizames C, et al. O-carboxyl- and N-methyltransferases active on plant aquaporins. Plant & Cell Physiol. 2010;51(12):2092–2104.
  • Cao X-J, Arnaudo AM, Garcia BA. Large-scale global identification of protein lysine methylation in vivo. Epigenetics. 2013;8(5):477–485.
  • Clarke SG. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem Sci. 2013;38(5):243–252.
  • Huang J, Berger SL. The emerging field of dynamic lysine methylation of non-histone proteins. Curr Opin Genet Dev. 2008;18(2):152–158.
  • Jones AM, Chory J, Dangl JL, et al. The impact of Arabidopsis on human health: diversifying our portfolio. Cell. 2008;133(6):939–943.
  • Chan S-L, Henderson IR, Jacobsen SE. Gardening the genome: dNA methylation in Arabidopsis thaliana. Nat Rev Genet. 2005;6(5):351–360.
  • Yan Q, Cho E, Lockett S, et al. Association of Lsh, a regulator of DNA methylation, with pericentromeric heterochromatin is dependent on intact heterochromatin. Mol Cell Biol. 2003;23(23):8416–8428.
  • Heidstra R, Sabatini S. Plant and animal stem cells: similar yet different. Nat Rev Mol Cell Biol. 2014;15(5):301–312.
  • Olariu V, Nilsson J, Jönsson H, et al. Different reprogramming propensities in plants and mammals: are small variations in the core network wirings responsible? PLoS ONE. 2017;12(4):e0175251.
  • Sang Y, Wu M-F, Wagner D. The stem cell—Chromatin connection. Semin Cell Dev Biol. 2009;20(9):1143–1148.
  • Laux T. The stem cell concept in plants: a matter of debate. Cell. 2003;113(3):281–283.
  • Koornneef M, Meinke D. The development of Arabidopsis as a model plant. Plant J. 2010;61(6):909–921.
  • Jiao W-B, Schneeberger K. Chromosome-level assemblies of multiple Arabidopsis genomes reveal hotspots of rearrangements with altered evolutionary dynamics. Nat Commun. 2020;11(1):989.
  • Pruitt RE, Meyerowitz EM. Characterization of the genome of Arabidopsis thaliana. J Mol Biol. 1986;187(2):169–183.
  • Goodman HM, Ecker JR, Dean C The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA. 1995; 92:10831–10835.
  • Bateman A, Martin M-J, Orchard S, et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49(D1):D480–9. doi:10.1093/nar/gkaa1100.
  • O’Leary NA, Wright MW, Brister JR, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45. DOI:10.1093/nar/gkv1189