989
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

DNA methylation and gene expression changes in mouse mammary tissue during successive lactations: part II – the impact of lactation rank

ORCID Icon, , , , , , ORCID Icon, ORCID Icon, & ORCID Icon show all
Article: 2215620 | Received 01 Dec 2022, Accepted 12 May 2023, Published online: 23 May 2023

References

  • Hovey RC, Trott JF, Vonderhaar BK. Establishing a framework for the functional mammary gland: from endocrinology to morphology. J Mammary Gland Biol Neoplasia. 2002;7(1):17–17.
  • Howlin J, McBryan J, Martin F. Pubertal mammary gland development: insights from mouse models. J Mammary Gland Biol Neoplasia. 2006;11(3–4):283–297.
  • Kleinberg DL, Ruan W. IGF-I, GH, and sex steroid effects in normal mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(4):353–360.
  • Oakes SR, Rogers RL, Naylor MJ, et al. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia. 2008;13(1):13–28.
  • Anderson SM, Rudolph MC, McManaman JL, et al. Key stages in mammary gland development. Secretory activation in the mammary gland: it’s not just about milk protein synthesis! Breast Cancer Res. 2007;9(1):204.
  • Casey TM, Plaut K. The role of glucocorticoids in secretory activation and milk secretion, a historical perspective. J Mammary Gland Biol Neoplasia. 2007;12(4):293–304.
  • Inman JL, Robertson C, Mott JD, et al. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142(6):1028–1042.
  • Lloyd-Lewis B, Harris OB, Watson CJ, et al. Mammary stem cells: premise, properties, and perspectives. Trends Cell Biol. 2017;27(8):556–567.
  • Shackleton M, Vaillant F, Simpson KJ, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–88.
  • Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–997.
  • Leng G, Caquineau C, Sabatier N. Regulation of Oxytocin Secretion. In: Vitamins & Hormones. Vol. 71. Elsevier; 2005. p. 27–58. DOI:10.1016/S0083-6729(05)71002-5
  • Brisken C, Kaur S, Chavarria TE, et al. Prolactin controls mammary gland development via direct and indirect mechanisms. Dev Biology. 1999;210(1):96–106.
  • Macias H, Hinck L. Mammary gland development: mammary gland development. WIRES Dev Biol. 2012;1(4):533–557.
  • Holliday H, Baker LA, Junankar SR, et al. Epigenomics of mammary gland development. BCR. 2018;20(1):100.
  • Ivanova E, Le Guillou S, Hue-Beauvais C, et al. Epigenetics: new Insights into Mammary Gland Biology. Genes (Basel). 2021;12(2):231.
  • Karlsson M, Zhang C, Méar L, et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 2021;7(31):eabh2169.
  • Kim MR, Wu M-J, Zhang Y, et al. TET2 directs mammary luminal cell differentiation and endocrine response. Nat Commun. 2020;11(1):4642.
  • Carvalho L, Ward RD, Brinkmeier ML, et al. Molecular basis for pituitary dysfunction: comparison of Prop1 and Pit1 mutant mice. Dev Biology. 2006;295(1):340.
  • Zhao H, Zhang S, Wu X, et al. DNA methylation pattern of the goat PITX1 gene and its effects on milk performance. Archives Animal Breeding. 2019;62(1):59–68.
  • Cabrera VE. Invited review: helping dairy farmers to improve economic performance utilizing data-driving decision support tools. Animal. 2018;12(1):134–144.
  • Adriaens I, Friggens NC, Ouweltjes W, et al. Productive life span and resilience rank can be predicted from on-farm first-parity sensor time series but not using a common equation across farms. J Dairy Sci. 2020;103(8):7155–7171.
  • Grayaa M, Vanderick S, Rekik B, et al. Linking first lactation survival to milk yield and components and lactation persistency in Tunisian Holstein cows. Archives Animal Breeding. 2019;62(1):153–160.
  • Kessler EC, Bruckmaier RM, Gross JJ. Milk production during the colostral period is not related to the later lactational performance in dairy cows. J Dairy Sci. 2014;97(4):2186–2192.
  • Ginger MR, Gonzalez-Rimbau MF, Gay JP, et al. Persistent Changes in Gene Expression Induced by Estrogen and Progesterone in the Rat Mammary Gland. Mol Endocrinol. 2001;15(11):1993–2009.
  • Peri S, de Cicco RL, Santucci-Pereira J, et al. Defining the genomic signature of the parous breast. BMC Med Genomics. 2012;5(1):46.
  • D’Cruz CM, Moody SE, Master SR, et al. Persistent Parity-Induced Changes in Growth Factors, TGF-β3, and Differentiation in the Rodent Mammary Gland. Mol Endocrinol. 2002;16(9):2034–2051.
  • Ethier SP, Van De Velde RM, Cundiff KC. CAMP levels in proliferating rat mammary epithelial cells in vitro and in vivo. Exp Cell Res. 1989;182(2):653–658.
  • Ivanova E, Hue-Beauvais C, Chaulot-Talmon A, et al. DNA methylation and gene expression changes in mouse mammary tissue during successive lactations: part I – the impact of inflammation. Epigenetics. 2023.
  • Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time Qrt-PCR performance. Mol Aspect Med. 2006;27(2–3):126–139.
  • Kozera B, Rapacz M. Reference genes in real-time PCR. J Appl Genet. 2013;54(4):391–406.
  • Gu H, Smith ZD, Bock C, et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat Protoc. 2011;6(4):468–481.
  • Perrier J-P, Kenny DA, Chaulot-Talmon A, et al. Accelerating Onset of Puberty Through Modification of Early Life Nutrition Induces Modest but Persistent Changes in Bull Sperm DNA Methylation Profiles Post-puberty. Front Genet. 2020;11:945.
  • Perrier J-P, Sellem E, Prézelin A, et al. A multi-scale analysis of bull sperm methylome revealed both species peculiarities and conserved tissue-specific features. BMC Genomics. 2018;19(1):404.
  • Costes V, Chaulot-Talmon A, Sellem E, et al. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clin Epigenetics. 2022;14(1):54.
  • Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27(11):1571–1572.
  • Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Bio. 2009;10(3):R25.
  • Akalin A, Kormaksson M, Li S, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Bio. 2012;13(10):R87.
  • Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2009a;37(1):1–13.
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009b;4(1):44–57.
  • Nedvetsky PI, Kwon S-H, Debnath J, et al. Cyclic AMP regulates formation of mammary epithelial acini in vitro. ?Mol Biol Cell. 2012;23(15):2973–2981.
  • Zhang D, Rogers GC, Buster DW, et al. Three microtubule severing enzymes contribute to the “Pacman-flux” machinery that moves chromosomes. J Cell Bio. 2007;177(2):231–242.
  • Mukherjee S, Valencia JDD, Stewman S, et al. Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle. 2012;11(12):2359–2366.
  • Charafeddine RA, Makdisi J, Schairer D, et al. Fidgetin-Like 2: a Microtubule-Based Regulator of Wound Healing. J Invest Dermatol. 2015;135(9):2309–2318.
  • O’Rourke BP, Kramer AH, Cao LL, et al. Fidgetin-Like 2 siRNA Enhances the Wound Healing Capability of a Surfactant Polymer Dressing. Adv Wound Care. 2019;8(3):91–100.
  • Brickner AG. Mechanisms of Minor Histocompatibility Antigen Immunogenicity: the Role of Infinitesimal versus Structurally Profound Polymorphisms. Immunol Res. 2006;36(1–3):33–42.
  • Al-Rugeebah A, Alanazi M, Parine NR. MEG3: an Oncogenic Long Non-coding RNA in Different Cancers. Pathol Oncol Res. 2019;25(3):859–874.
  • Fanale D, Amodeo V, Caruso S. The Interplay between Metabolism, PPAR Signaling Pathway, and Cancer. PPAR Res. 2017;2017:1–2.
  • Moyes KM, Drackley JK, Morin DE, et al. Gene network and pathway analysis of bovine mammary tissue challenged with Streptococcus uberis reveals induction of cell proliferation and inhibition of PPARγ signaling as potential mechanism for the negative relationships between immune response and lipid metabolism. BMC Genomics. 2009;10(1):542.
  • Say B, Dizdar EA, Degirmencioglu H, et al. The effect of lactational mastitis on the macronutrient content of breast milk. Early Hum Dev. 2016;98:7–9.
  • Alba DF, da Rosa G, Hanauer D, et al. Subclinical mastitis in Lacaune sheep: causative agents, impacts on milk production, milk quality, oxidative profiles and treatment efficacy of ceftiofur. Microbial Pathogenesis. 2019;137:103732.
  • Shangraw EM, Rodrigues RO, Witzke MC, et al. Intramammary lipopolysaccharide infusion induces local and systemic effects on milk components in lactating bovine mammary glands. J Dairy Sci. 2020;103(8):7487–7497.
  • Jardé T, Dale T. Wnt signalling in murine postnatal mammary gland development. Acta Physiol (Oxf). 2012;204(1):118–127.
  • Hargreaves DC, Horng T, Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 2009;138(1):129–145.