2,033
Views
3
CrossRef citations to date
0
Altmetric
Review

RNA modification m6Am: the role in cardiac biology

, ORCID Icon, , ORCID Icon & ORCID Icon
Article: 2218771 | Received 07 Dec 2022, Accepted 23 May 2023, Published online: 18 Jun 2023

References

  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–11. DOI:10.1093/nar/gkx1030
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–3975.
  • Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, et al. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8(1):176–189. DOI:10.1038/nprot.2012.148
  • Wei C, Gershowitz A, Moss B. N6, O2’-dimethyladenosine a novel methylated ribonucleoside next to the 5’ terminal of animal cell and virus mRnas. Nature. 1975;257(5523):251–253.
  • Bokar JA. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA, in Fine-Tuning of RNA functions by modification and editing. H. Grosjean, Editor. Springer;Berlin Heidelberg: Berlin, Heidelberg: 2005pp. 141–177. DOI:10.1007/b106365
  • Akichika S, Hirano S, Shichino Y, et al. Cap-specific terminal N 6 -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science. 2019;363(6423):363(6423. DOI:10.1126/science.aav0080
  • Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–375. DOI:10.1038/nature21022
  • Mauer J, Sindelar M, Despic V, et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15(4):340–347. DOI:10.1038/s41589-019-0231-8
  • Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973–985.e5. DOI:10.1016/j.molcel.2018.08.011
  • Liu J, Li K, Cai J, et al. Landscape and Regulation of m(6)A and m(6)Am methylome across human and mouse tissues. Mol Cell. 2020;77(2):426–440.e6. DOI:10.1016/j.molcel.2019.09.032
  • Ben-Haim MS, Pinto Y, Moshitch-Moshkovitz S, et al. Dynamic regulation of N6,2′-O-dimethyladenosine (m6Am) in obesity. Nat Commun. 2021;12(1):7185. DOI:10.1038/s41467-021-27421-2
  • Relier S, Ripoll J, Guillorit H, et al. FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun. 2021;12(1):1716. DOI:10.1038/s41467-021-21758-4
  • Jin MZ, Zhang Y-G, Jin W-L, et al. A pan-cancer analysis of the oncogenic and immunogenic role of m6am methyltransferase PCIF1. Front Oncol. 2021;11:753393.
  • Zhuo W, Sun M, Wang K, et al. M(6)am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 2022;8(1):48. DOI:10.1038/s41421-022-00395-1
  • Wang L, Wu L, Zhu Z, et al. Role of PCIF1 -mediated 5′-cap N6 -methyladeonsine mRNA methylation in colorectal cancer and anti-PD -1 immunotherapy. Embo J. 2023;42(2):e111673. DOI:10.15252/embj.2022111673
  • Tartell MA, Boulias, K, Hoffmann, GB, et al. Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β. Proc Natl Acad Sci U S A. 2021;118(29):e2025769118.
  • Zhang Q, Kang Y, Wang S, et al. HIV reprograms host m(6)Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nat Commun. 2021;12(1):5543. DOI:10.1038/s41467-021-25683-4
  • Wang L, Wang S, Wu L, et al. PCIF1-mediated deposition of 5′-cap N 6 ,2′- O -dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2023;120(5):e2210361120. DOI:10.1073/pnas.2210361120
  • Sun H, Zhang M, Li K, et al. Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res. 2019;29(1):80–82. DOI:10.1038/s41422-018-0117-4
  • Yu D, Dai N, Wolf EJ, et al. Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. J Biol Chem. 2022;298(4):101751. DOI:10.1016/j.jbc.2022.101751
  • Hirose Y, Iwamoto Y, Sakuraba K, et al. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Biochem Biophys Res Commun. 2008;369(2):449–455. DOI:10.1016/j.bbrc.2008.02.042
  • Sendinc E, Valle-Garcia D, Dhall A, et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell. 2019;75(3):620–630.e9. DOI:10.1016/j.molcel.2019.05.030
  • Cowling VH. CAPAM: the mRNA Cap Adenosine N6-Methyltransferase. Trends Biochem Sci. 2019;44(3):183–185.
  • Goh YT, Koh C, Sim DY, et al. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-Mrna splicing. Nucleic Acids Res. 2020;48(16):9250–9261. DOI:10.1093/nar/gkaa684
  • Chen H, Gu L, Orellana EA, et al. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 2020;30(6):544–547. DOI:10.1038/s41422-019-0270-4
  • Hao Z, Wu T, Cui X, et al. N(6)-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol Cell. 2020;78(3):382–395.e8. DOI:10.1016/j.molcel.2020.02.018
  • Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887. DOI:10.1038/nchembio.687
  • Mauer J, Jaffrey SR. FTO, m(6) A(m), and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett. 2018;592(12):2012–2022.
  • Phan A, Mathiyalangan P, Sahoo S. Abstract 13709: cardioprotective Mechanisms of FTO-Regulated m6A in Heart Failure. Circulation. 2022;146(Suppl_1):A13709–A13709.
  • Zhang B, Jiang H, Dong Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 2021;8(6):746–758. DOI:10.1016/j.gendis.2020.07.011
  • Longenecker JZ, Gilbert CJ, Golubeva VA, et al. Epitranscriptomics in the Heart: a Focus on m(6)A. Curr Heart Fail Rep. 2020;17(5):205–212. DOI:10.1007/s11897-020-00473-z
  • Wu S, Zhang S, Wu X, et al. M(6)a RNA methylation in cardiovascular diseases. Mol Ther. 2020;28(10):2111–2119. DOI:10.1016/j.ymthe.2020.08.010
  • Qin Y, Li L, Luo E, et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 2020;46(6):1958–1972. DOI:10.3892/ijmm.2020.4746
  • Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2020;43(2):153–154.
  • Kumari R, Ranjan P, Suleiman ZG, et al. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res. 2022;118(7):1680–1692. DOI:10.1093/cvr/cvab160
  • Leptidis S, Papakonstantinou E, Diakou K, et al. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med. 2022;49(1).
  • Sikorski V, Karjalainen P, Blokhina D, et al. Epitranscriptomics of ischemic heart disease—The IHD-EPITRAN study design and objectives. Int J Mol Sci. 2021;22(12):6630. DOI:10.3390/ijms22126630
  • Chen YS, Ouyang X-P, Yu X-H, et al. N6-Adenosine Methylation (m(6)A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res. 2021;14(5):857–872. DOI:10.1007/s12265-021-10108-w
  • Dieterich C, Völkers M. Chapter 6 - RNA modifications in cardiovascular disease—An experimental and computational perspective, in Epigenetics in Cardiovascular Disease. Y. Devaux and E.L. Robinson, Editors. Academic Press;2021pp. 113–125. DOI:10.1016/B978-0-12-822258-4.00003-1
  • Zhou W, Wang C, Chang J, et al. RNA methylations in cardiovascular diseases, molecular structure, biological functions and regulatory roles in cardiovascular diseases. Front Pharmacol. 2021;12:722728.
  • Peng L, Long T, Li F, et al. Emerging role of m 6 a modification in cardiovascular diseases. Cell Biol Int. 2022;46(5):711–722. DOI:10.1002/cbin.11773
  • Xu Z, Lv B, Qin Y, et al. Emerging roles and mechanism of m6a methylation in cardiometabolic diseases. Cells. 2022;11(7):1101. DOI:10.3390/cells11071101
  • Liu C, Gu L, Deng W, et al. N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Front Cardiovasc Med. 2022;9:887838.
  • Li L, Xu N, Liu J, et al. M6a methylation in cardiovascular diseases: from mechanisms to therapeutic potential. Front Genet. 2022;13:908976.
  • Fan S, Hu Y. Role of m6A methylation in the occurrence and development of heart failure. Front Cardiovasc Med. 2022;9:892113.
  • Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, et al. Relevance of N6-methyladenosine regulators for transcriptome: implications for development and the cardiovascular system. J Mol Cell Cardiol. 2021;160:56–70.
  • Benak D, Holzerova K, Hrdlicka J, et al. Myocardial epitranscriptomics in fasting. J Mol Cell Cardiol, ISHR Berlin. 2022;173:52. DOI:10.1016/j.yjmcc.2022.08.104
  • Boissel S, Reish O, Proulx K, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85(1):106–111. DOI:10.1016/j.ajhg.2009.06.002
  • Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N 6- methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518–532. DOI:10.1161/CIRCULATIONAHA.118.033794
  • Shi X, Cao Y, Zhang X, et al. Comprehensive analysis of N6-Methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction. Front Cell Dev Biol. 2021;9:756483.
  • Zhang B, Jiang H, Wu J, et al. M6a demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther. 2021;6(1):377. DOI:10.1038/s41392-021-00699-w
  • Zhang B, Xu Y, Cui X, et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:647806.
  • Hinger SA, Wei J, Dorn LE, et al. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2021;151:46–55.
  • Wen C, Lan M, Tan X, et al. GSK3β Exacerbates Myocardial Ischemia/Reperfusion Injury by Inhibiting Myc. Oxid Med Cell Longev. 2022;2022:1–23.
  • Wang X, Wu Y, Guo R, et al. Comprehensive analysis of n6-methyladenosine RNA methylation regulators in the diagnosis and subtype classification of acute myocardial infarction. J Immunol Res. 2022;2022:1–21.
  • Vausort M, Niedolistek M, Lumley AI, et al. Regulation of N6-Methyladenosine after Myocardial Infarction. Cells. 2022;11(15):2271. DOI:10.3390/cells11152271
  • Liu C, Mou S, Pan C, et al. The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS ONE. 2013;8(8):e71901.
  • Doney ASF, Dannfald J, Kimber CH, et al. The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: a genetics of diabetes audit and research study in Tayside Scotland (Go-DARTS) study. Circ Cardiovasc Genet. 2009;2(3):255–259. DOI:10.1161/CIRCGENETICS.108.822320
  • Hubacek JA, Vrablik M, Dlouha D, et al. Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. Clin Chim Acta. 2016;454:119–123.
  • Hubacek JA, Stanek V, Gebauerova M, et al. A FTO variant and risk of acute coronary syndrome. Clin Chim Acta. 2010;411(15–16):1069–1072.
  • Hubacek JA, Vymetalova J, Lanska V, et al. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin Transplant. 2018;32(12):e13443. DOI:10.1111/ctr.13443
  • Carnevali L, Graiani G, Rossi S, et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS ONE. 2014;9(4):e95499.
  • Gan XT, Zhao G, Huang CX, et al. Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy. PLoS ONE. 2013;8(9):e74235. DOI:10.1371/journal.pone.0074235
  • Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22(1):54–66. DOI:10.1002/ejhf.1672
  • Li W, Xing C, Bao L, et al. Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics. 2022;23(1):576. DOI:10.1186/s12864-022-08833-w
  • Dubey PK, Patil M, Singh S, et al. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem. 2022;477(1):129–141. DOI:10.1007/s11010-021-04267-2
  • Xu Z, Qin Y, Lv B, et al. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A Methylation in the Heart. Nutrients. 2022;14(2):251. DOI:10.3390/nu14020251
  • Ma Y, Liu X, Bi Y, et al. Alteration of N(6)-Methyladenosine mRNA methylation in a human stem cell-derived cardiomyocyte model of tyrosine kinase inhibitor-induced cardiotoxicity. Front Cardiovasc Med. 2022;9:849175.
  • Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol. 2021;106(12):2423–2433.
  • Shen W, Li H, Su H, et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem. 2021;476(5):2171–2179. DOI:10.1007/s11010-021-04069-6
  • Ke WL, Huang Z-W, Peng C-L, et al. M 6 a demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered. 2022;13(3):5443–5452. DOI:10.1080/21655979.2022.2030572
  • Hlavackova M, Benak D, Sotakova D, et al. 4007 Fat mass and obesity-associated protein in chronically hypoxic myocardium. High Altitude Medicine & Biology. 2018;19(4):A–443. https://www.liebertpub.com/doi/10.1089/ham.2018.29015.abstracts
  • Yu Y, Pan Y, Fan Z, et al. LuHui derivative, a novel compound that inhibits the fat mass and obesity-associated (FTO), alleviates the inflammatory response and injury in hyperlipidemia-induced cardiomyopathy. Front Cell Dev Biol. 2021;9:731365.
  • Liu K, Ju W, Ouyang S, et al. Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Front Cell Dev Biol. 2022;10:954769.
  • Su X, Shen Y, Jin Y, et al. Aging-Associated Differences in Epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front Pharmacol. 2021;12:654316.
  • Semenovykh D, Benak D, Holzerova K, et al. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res. 2022;71(6):877–882. online. DOI:10.33549/physiolres.934970.
  • Bao X, Zhang Y, Li H, et al. Rm2target: a comprehensive database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids Res. 2023;51(D1):D269–d279. DOI:10.1093/nar/gkac945
  • Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963–17971. DOI:10.1021/ja3064149
  • Zheng G, Cox T, Tribbey L, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5(8):658–665. DOI:10.1021/cn500042t
  • Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–384. DOI:10.1093/nar/gku1276
  • Wang T, Hong T, Huang Y, et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc. 2015;137(43):13736–13739. DOI:10.1021/jacs.5b06690
  • Toh JDW, Sun L, Lau LZM, et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N 6 -methyladenosine demethylase FTO. Chem Sci. 2015;6(1):112–122. DOI:10.1039/C4SC02554G
  • He W, Zhou B, Liu W, et al. Identification of a novel small-molecule binding site of the fat mass and obesity associated protein (FTO). J Med Chem. 2015;58(18):7341–7348. DOI:10.1021/acs.jmedchem.5b00702
  • Svensen N, Jaffrey SR. Fluorescent RNA Aptamers as a Tool to Study RNA-Modifying Enzymes. Cell Chem Biol. 2016;23(3):415–425.
  • Huang Y, Su R, Sheng Y, et al. Small- molecule targeting of oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell. 2019;35(4):677–691.e10. DOI:10.1016/j.ccell.2019.03.006
  • Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune Evasion. Cancer Cell. 2020;38(1):79–96.e11. DOI:10.1016/j.ccell.2020.04.017
  • Huff S, Tiwari SK, Gonzalez GM, et al. M 6 A-RNA Demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol. 2021;16(2):324–333. DOI:10.1021/acschembio.0c00841
  • Qin B, Bai Q, Yan D, et al. Discovery of novel mRNA demethylase FTO inhibitors against esophageal cancer. J Enzyme Inhib Med Chem. 2022;37(1):1995–2003. DOI:10.1080/14756366.2022.2098954
  • Liu Y, Liang G, Xu H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221–1233.e11. DOI:10.1016/j.cmet.2021.04.001
  • Kruse S, Zhong S, Bodi Z, et al. A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Sci Rep. 2011;1(1):126. DOI:10.1038/srep00126
  • Wang J, Alvin Chew BL, Lai Y, et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019;47(20):e130. DOI:10.1093/nar/gkz751
  • Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8(1):284–296.
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–772. DOI:10.1038/nmeth.3453
  • Boulias K, Toczydłowska-Socha D, Hawley BR, et al. Identification of the m(6)Am Methyltransferase PCIF1 reveals the location and functions of m(6)Am in the Transcriptome. Mol Cell. 2019;75(3):631–643.e8. DOI:10.1016/j.molcel.2019.06.006
  • Koh CWQ, Goh YT, Goh WSS. Atlas of quantitative single-base-resolution N(6)-methyl-adenine methylomes. Nat Commun. 2019;10(1):5636.
  • Sun H, Li K, Zhang X, et al. M(6)am-seq reveals the dynamic m(6)Am methylation in the human transcriptome. Nat Commun. 2021;12(1):4778. DOI:10.1038/s41467-021-25105-5
  • Zhang M, Sun H, Li K, et al. M(6)am RNA modification detection by m(6)Am-seq. Methods. 2022;203:242–248.
  • Muthmann N, Albers M, Rentmeister A. CAPturAM, a chemo-enzymatic strategy for selective enrichment and detection of physiological CAPAM-Targets. Angew Chem Int Ed Engl. 2023;62(4):e202211957.
  • Jiang J, Song B, Chen K, et al. M6ampred: identifying RNA N6, 2′-O-dimethyladenosine (m6Am) sites based on sequence-derived information. Methods. 2022;203:328–334.
  • Song Z, Huang D, Song B, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021;12(1):4011. DOI:10.1038/s41467-021-24313-3
  • Luo Z, Su W, Lou L, et al. Dlm6am: a deep-learning-based tool for identifying N6,2′-O-Dimethyladenosine Sites in RNA sequences. Int J Mol Sci. 2022;23(19):11026. DOI:10.3390/ijms231911026