1,385
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Epigenetic aging in cows is accelerated by milk production

, , , , , & show all
Article: 2240188 | Received 19 Dec 2022, Accepted 19 Jul 2023, Published online: 02 Aug 2023

References

  • Zimin AV, Delcher AL, Florea L, et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009;10(4):R42. doi: 10.1186/gb-2009-10-4-r42
  • Polejaeva IA, Rutigliano HM, Wells KD. Livestock in biomedical research: history, current status and future prospective. Reprod Fertil Dev. 2016;28(1–2):112–14. doi: 10.1071/RD15343
  • Kordowitzki P, Haghani A, Zoller JA, et al. Epigenetic clock and methylation study of oocytes from a bovine model of reproductive aging. Aging Cell. 2021;20(5):e13349. doi: 10.1111/acel.13349
  • Liu S, Gao Y, Canela-Xandri O, et al. A multi-tissue atlas of regulatory variants in cattle. Nat Genet. 2022;54(9):1438–1447. doi: 10.1038/s41588-022-01153-5
  • Tucker HA. Quantitative estimates of mammary growth during various physiological states: a review. J Dairy Sci. 1987;70(9):1958–1966. doi: 10.3168/jds.S0022-0302(87)80238-2
  • Knight CH, Wilde CJ. Mammary cell changes during pregnancy and lactation. Livest Prod Sci. 1993;35(1):3–19. doi: 10.1016/0301-6226(93)90178-K
  • Tucker HA. Factors affecting mammary gland cell numbers. J Dairy Sci. 1969;52(5):720–729. doi: 10.3168/jds.S0022-0302(69)86637-3
  • Rubbi L, Zhang H, Feng J, et al. The effects of age, sex, weight, and breed on canid methylomes. Epigenetics. 2022;1–16. Published online May 3. doi: 10.1080/15592294.2022.2069385
  • Dong W, Yang J, Zhang Y, et al. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. J Anim Breed Genet Tierzuchtung Zuchtungsbiologie. 2021;138(5):562–573. doi: 10.1111/jbg.12530
  • VanRaden PM. Invited review: selection on net merit to improve lifetime profit. J Dairy Sci. 2004;87(10):3125–3131. doi: 10.3168/jds.S0022-0302(04)73447-5
  • Pritchard T, Coffey M, Mrode R, et al. Understanding the genetics of survival in dairy cows. J Dairy Sci. 2013;96(5):3296–3309. doi: 10.3168/jds.2012-6219
  • Ferguson JD, Skidmore A. Reproductive performance in a select sample of dairy herds. J Dairy Sci. 2013;96(2):1269–1289. doi: 10.3168/jds.2012-5805
  • Astiz S, Fargas O. Pregnancy per AI differences between primiparous and multiparous high-yield dairy cows after using Double Ovsynch or G6G synchronization protocols. Theriogenology. 2013;79(7):1065–1070. doi: 10.1016/j.theriogenology.2013.01.026
  • Li Q, Liang R, Li Y, et al. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet. 2020;21(1):72. doi: 10.1186/s12863-020-00882-y
  • Khan MZ, Khan A, Xiao J, et al. Role of the JAK-STAT Pathway in Bovine Mastitis and Milk Production. Anim Open Access J MDPI. 2020;10(11):E2107. doi: 10.3390/ani10112107
  • Singh K, Molenaar AJ, Swanson KM, et al. Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production. Anim Int J Anim Biosci. 2012;6(3):375–381. doi: 10.1017/S1751731111002564
  • Rijnkels M, Freeman-Zadrowski C, Hernandez J, et al. Epigenetic modifications unlock the milk protein gene loci during mouse mammary gland development and differentiation. PLoS One. 2013;8(1):e53270. doi: 10.1371/journal.pone.0053270
  • Singh K, Erdman RA, Swanson KM, et al. Epigenetic regulation of milk production in dairy cows. J Mammary Gland Biol Neoplasia. 2010;15(1):101–112. doi: 10.1007/s10911-010-9164-2
  • Lafontaine S, Sirard MA. IGF2R, KCNQ1, PLAGL1, and SNRPN DNA methylation is completed in bovine by the early antral follicle stage. Mol Reprod Dev. 2022;89(7):290–297. doi: 10.1002/mrd.23621
  • Landry DA, Rossi-Perazza L, Lafontaine S, et al. Expression of atresia biomarkers in granulosa cells after ovarian stimulation in heifers. Reprod Camb Engl. 2018;156(3):239–248. doi: 10.1530/REP-18-0186
  • Ribeiro AMF, Sanglard LP, Wijesena HR, et al. DNA methylation profile in beef cattle is influenced by additive genetics and age. Sci Rep. 2022;12(1):12016. doi: 10.1038/s41598-022-16350-9
  • Golbus J, Palella TD, Richardson BC. Quantitative changes in T cell DNA methylation occur during differentiation and ageing. Eur J Immunol. 1990;20(8):1869–1872. doi: 10.1002/eji.1830200836
  • Romanov GA, Vanyushin BF. Methylation of reiterated sequences in mammalian DNAs. Effects of the tissue type, age, malignancy and hormonal induction. Biochim Biophys Acta. 1981;653(2):204–218. doi: 10.1016/0005-2787(81)90156-8
  • Singhal RP, Mays-Hoopes LL, Eichhorn GL. DNA methylation in aging of mice. Mech Ageing Dev. 1987;41(3):199–210. doi: 10.1016/0047-6374(87)90040-6
  • Vanyushin BF, Mazin AL, Vasilyev VK, et al. The content of 5-methylcytosine in animal DNA: the species and tissue specificity. Biochim Biophys Acta. 1973;299(3):397–403. doi: 10.1016/0005-2787(73)90264-5
  • Vanyushin BF, Nemirovsky LE, Klimenko VV, et al. The 5-methylcytosine in DNA of rats. Tissue and age specificity and the changes induced by hydrocortisone and other agents. Gerontologia. 1973;19(3):138–152. doi: 10.1159/000211967
  • Wilson VL, Smith RA, Ma S, et al. Genomic 5-methyldeoxycytidine decreases with age. J Biol Chem. 1987;262(21):9948–9951. doi: 10.1016/S0021-9258(18)61057-9
  • Hayes BJ, Nguyen LT, Forutan M, et al. An Epigenetic Aging Clock for Cattle Using Portable Sequencing Technology. Front Genet. 2021;12:760450. doi: 10.3389/fgene.2021.760450
  • Caulton A, Dodds KG, McRae KM, et al. Development of epigenetic clocks for New Zealand livestock. Published online July 14, 2021:2021.06.30.450497. doi: 10.1101/2021.06.30.450497
  • Farrell C, Thompson M, Tosevska A, et al. BiSulfite Bolt: A bisulfite sequencing analysis platform. Gigascience. 2021;10(5):giab033. doi: 10.1093/gigascience/giab033
  • Morselli M, Farrell C, Rubbi L, et al. Targeted bisulfite sequencing for biomarker discovery. Methods San Diego Calif. 2021;187:13–27. doi: 10.1016/j.ymeth.2020.07.006
  • Farrell C, Snir S, Pellegrini M, et al. The Epigenetic Pacemaker: modeling epigenetic states under an evolutionary framework. Bioinforma Oxf Engl. 2020;36(17):4662–4663. doi: 10.1093/bioinformatics/btaa585
  • Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22. doi: 10.18637/jss.v033.i01
  • Chen EY, Tan CM, Kou Y, et al. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinf. 2013;128(14). doi: 10.1186/1471-2105-14-128
  • Kuleshov MV, Jones MR, Rouillard AD, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 Jul 8;44(W1):W90–7. doi: 10.1093/nar/gkw377
  • Xie Z, Bailey A, Kuleshov MV, et al. Gene set knowledge discovery with Enrichr. Curr Protoc. 2021;1(3):e90. doi: 10.1002/cpz1.90
  • Dozmorov MG. Polycomb repressive complex 2 epigenomic signature defines age-associated hypermethylation and gene expression changes. Epigenetics. 2015;10(6):484–495. doi: 10.1080/15592294.2015.1040619
  • Yuan T, Jiao Y, Jong SD, et al. An Integrative Multi-scale Analysis of the Dynamic DNA Methylation Landscape in Aging. PLoS Genet. 2015;11(2):e1004996. doi: 10.1371/journal.pgen.1004996
  • Hagman S, Mäkinen A, Ylä-Outinen L, et al. Effects of inflammatory cytokines IFN-γ, TNF-α and IL-6 on the viability and functionality of human pluripotent stem cell-derived neural cells. JNeuroimmunol. 2019;331:36–45. doi: 10.1016/j.jneuroim.2018.07.010
  • Snir S, Farrell C, Pellegrini M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics. 2019;14(9):912–926. doi: 10.1080/15592294.2019.1623634.
  • Pinho GM, Martin JGA, Farrell C, et al. Hibernation slows epigenetic ageing in yellow-bellied marmots. Nat Ecol Evol. 2022;6(4):418–426. doi: 10.1038/s41559-022-01679-1
  • Larison B, Pinho GM, Haghani A, et al. Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids. Commun Biol. 2021;4(1):1412. doi: 10.1038/s42003-021-02935-z
  • Widdison S, Coffey TJ. Cattle and chemokines: evidence for species-specific evolution of the bovine chemokine system. Anim Genet. 2011;42(4):341–353. doi: 10.1111/j.1365-2052.2011.02200.x
  • Hosokawa Y, Hosokawa I, Shindo S, et al. IL-29 Enhances CXCL10 Production in TNF-α-stimulated Human Oral Epithelial Cells. Immunol Invest. 2017;46(6):615–624. doi: 10.1080/08820139.2017.1336176
  • Ye M, Xu M, Lu M, et al. Identification of candidate genes associated with milk yield trait in buffaloes (Bubalus bubalis) by restriction-site-associated DNA sequencing. Rev Bras Zootec. 2020;49. doi: 10.37496/rbz4920190267
  • Sun Y, Wang C, Sun X, et al. Characterization of the milk fat globule membrane proteome in colostrum and mature milk of Xinong Saanen goats. J Dairy Sci. 2020;103(4):3017–3024. doi: 10.3168/jds.2019-17739
  • He Y, He Z, Leone S, et al. Milk Exosomes Transfer Oligosaccharides into Macrophages to Modulate Immunity and Attenuate Adherent-Invasive E. coli (AIEC) Infection. Nutrients. 2021;13(9):3198. doi: 10.3390/nu13093198
  • Li D, Yan Z, Lu L, et al. Pleiotropy of the de novo-originated gene MDF1. Sci Rep. 2014;4:7280. doi: 10.1038/srep07280
  • Ellinghaus E, Ellinghaus D, Krusche P, et al. Genome-wide association analysis for chronic venous disease identifies EFEMP1 and KCNH8 as susceptibility loci. Sci Rep. 2017;7(1):45652. doi: 10.1038/srep45652
  • Serth J, Peters I, Dubrowinskaja N, et al. Age-, tumor-, and metastatic tissue-associated DNA hypermethylation of a T-box brain 1 locus in human kidney tissue. Clin Epigenetics. 2020;12:33. doi: 10.1186/s13148-020-0823-x
  • Konno D, Iwashita M, Satoh Y, et al. The mammalian DM domain transcription factor Dmrta2 is required for early embryonic development of the cerebral cortex. PLoS One. 2012;7(10):e46577. doi: 10.1371/journal.pone.0046577
  • Lan Y, Xiao X, Luo Y, et al. FEZF1 is an Independent Predictive Factor for Recurrence and Promotes Cell Proliferation and Migration in Cervical Cancer. J Cancer. 2018;9(21):3929–3938. doi: 10.7150/jca.26073
  • Chen G, Lustig A, Ping WN. T Cell Aging: A Review of the Transcriptional Changes Determined from Genome-Wide Analysis. Front Immunol. 2013;4:121. doi: 10.3389/fimmu.2013.00121
  • Greer KA, Canterberry SC, Murphy KE. Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci. 2007;82(2):208–214. doi: 10.1016/j.rvsc.2006.06.005
  • Horvath S, Lu AT, Haghani A, et al. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A. 2022;119(21):e2120887119. doi: 10.1073/pnas.2120887119
  • Moreira LC, Rosa GJM, Schaefer DM. Beef production from cull dairy cows: a review from culling to consumption. J Anim Sci. 2021;99(7):skab192. doi: 10.1093/jas/skab192
  • Zheng S, Qin G, Zhen Y, et al. Correlation of oxidative stress‐related indicators with milk composition and metabolites in early lactating dairy cows. Vet Med Sci. 2021;7(6):2250–2259. doi: 10.1002/vms3.615
  • Lucy MC. Stress, strain, and pregnancy outcome in postpartum cows. Anim Reprod. 16(3):455–464. doi: 10.21451/1984-3143-AR2019-0063
  • Collier RJ, Renquist BJ, Xiao Y. A 100-Year Review: Stress physiology including heat stress. J Dairy Sci. 2017;100(12):10367–10380. doi: 10.3168/jds.2017-13676
  • Polsky L, von Keyserlingk MAG. Invited review: Effects of heat stress on dairy cattle welfare. J Dairy Sci. 2017;100(11):8645–8657. doi: 10.3168/jds.2017-12651