1,018
Views
0
CrossRef citations to date
0
Altmetric
Research article

Analysis of genome-wide 5-hydroxymethylation of blood samples stored in different anticoagulants: opportunities for the expansion of clinical resources for epigenetic research

, , , , , , & show all
Article: 2271692 | Received 21 Apr 2023, Accepted 10 Oct 2023, Published online: 29 Oct 2023

References

  • Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in the epigenome. Nat Rev Genet. 2011;13(1):7–11. doi: 10.1038/nrg3080
  • Zeng C, Stroup EK, Zhang Z, et al. Towards precision medicine: advances in 5-hydroxymethylcytosine cancer biomarker discovery in liquid biopsy. Cancer Commun (Lond). 2019;39(1):12. doi: 10.1186/s40880-019-0356-x
  • Liu M, Zhang Z, Zhang W, et al. Advances in biomarker discovery using circulating cell-free DNA for early detection of hepatocellular carcinoma. WIREs Mechanisms of Disease. 2023;15(3):e1598. doi: 10.1002/wsbm.1598
  • Song CX, Szulwach KE, Fu Y, et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnol. 2011;29(1):68–72. doi: 10.1038/nbt.1732
  • Han D, Lu X, Shih AH, et al. A highly sensitive and robust method for genome-wide 5hmC profiling of rare cell populations. Molecular Cell. 2016;63(4):711–719. doi: 10.1016/j.molcel.2016.06.028
  • Gao P, Lin S, Cai M, et al. 5-hydroxymethylcytosine profiling from genomic and cell-free DNA for colorectal cancers patients. J Cell Mol Med. 2019;23(5):3530–3537. doi: 10.1111/jcmm.14252
  • Li W, Zhang X, Lu X, et al. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic biomarkers for human cancers. Cell Res. 2017;27(10):1243–1257. doi: 10.1038/cr.2017.121
  • Cai J, Zeng C, Hua W, et al. An integrative analysis of genome-wide 5-hydroxymethylcytosines in circulating cell-free DNA detects noninvasive diagnostic markers for gliomas. Neurooncol Adv. 2021;3(1):vdab049. doi: 10.1093/noajnl/vdab049
  • Cai J, Chen L, Zhang Z, et al. Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma. Gut. 2019;68(12):2195–2205. doi: 10.1136/gutjnl-2019-318882
  • Song CX, Yin S, Ma L, et al. 5-hydroxymethylcytosine signatures in cell-free DNA provide information about tumor types and stages. Cell Res. 2017;27(10):1231–1242. doi: 10.1038/cr.2017.106
  • Chiu BC, Zhang Z, You Q, et al. Prognostic implications of 5-hydroxymethylcytosines from circulating cell-free DNA in diffuse large B-cell lymphoma. Blood Adv. 2019;3(19):2790–2799. doi: 10.1182/bloodadvances.2019000175
  • Applebaum MA, Barr EK, Karpus J, et al. 5-hydroxymethylcytosine profiles in circulating cell-free DNA associate with disease Burden in children with neuroblastoma. Clin Cancer Res. 2020;26(6):1309–1317. doi: 10.1158/1078-0432.CCR-19-2829
  • Dong C, Chen J, Zheng J, et al. 5-hydroxymethylcytosine signatures in circulating cell-free DNA as diagnostic and predictive biomarkers for coronary artery disease. Clin Epigenetics. 2020;12(1):17. doi: 10.1186/s13148-020-0810-2
  • Zeng C, Yang Y, Zhang Z, et al. 304-OR: 5-hydroxymethylcytosines in circulating cell-free DNA Reveal Diabetic nephropathy. Diabetes. 2020;69(Supplement_1):304–OR. doi: 10.2337/db20-304-OR
  • Yang Y, Zeng C, Lu X, et al. 5-hydroxymethylcytosines in circulating cell-free DNA reveal vascular complications of type 2 diabetes. Clin Chem. 2019;65(11):1414–1425. doi: 10.1373/clinchem.2019.305508
  • Han L, Chen C, Lu X, et al. Alterations of 5-hydroxymethylcytosines in circulating cell-free DNA reflect retinopathy in type 2 diabetes. Genomics. 2020;113(1 Pt 1):79–87. doi: 10.1016/j.ygeno.2020.11.014
  • Zhang Z, Beadell A, Capuano A, et al. PB2428: genome-wide mapping implicates 5-hydroxymethylcytosines in diabetes and Alzheimer's disease. In: The ASHG Annual Meeting; 2022; Los Angeles, CA;
  • Chiu BC, Zhang Z, Derman BA, et al. Genome-wide profiling of 5-hydroxymethylcytosines in circulating cell-free DNA reveals population-specific pathways in the development of multiple myeloma. J Hematol Oncol. 2022;15(1):106. doi: 10.1186/s13045-022-01327-y
  • Chiu BC, Chen C, You Q, et al. Alterations of 5-hydroxymethylation in circulating cell-free DNA reflect molecular distinctions of subtypes of non-Hodgkin lymphoma. NPJ Genom Med. 2021;6(1):11. doi: 10.1038/s41525-021-00179-8
  • Yokota M, Tatsumi N, Nathalang O, et al. Effects of heparin on polymerase chain reaction for blood white cells. J Clin Lab Analysis. 1999;13(3):133–140. doi: 10.1002/(SICI)1098-2825(1999)13:3<133:AID-JCLA8>3.0.CO;2-0
  • Zhu CS, Pinsky PF, Kramer BS, et al. The prostate, lung, colorectal, and ovarian cancer screening trial and its associated research resource. JNCI. 2013;105(22):1684–1693. doi: 10.1093/jnci/djt281
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–2120. doi: 10.1093/bioinformatics/btu170
  • Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nat Methods. 2012;9(4):357–359. doi: 10.1038/nmeth.1923
  • Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for the ENCODE project. Genome Res. 2012;22(9):1760–1774. doi: 10.1101/gr.135350.111
  • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930. doi: 10.1093/bioinformatics/btt656
  • An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74. doi: 10.1038/nature11247
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8