868
Views
0
CrossRef citations to date
0
Altmetric
Research article

Examination of newborn DNA methylation among women with polycystic ovary syndrome/hirsutism

, , , , , , , , , , & ORCID Icon show all
Article: 2282319 | Received 03 Apr 2023, Accepted 06 Nov 2023, Published online: 22 Nov 2023

References

  • Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–12. doi: 10.1038/nrendo.2018.24
  • Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602–1618. doi: 10.1093/humrep/dey256
  • Vink JM, Sadrzadeh S, Lambalk CB, et al. Heritability of polycystic ovary syndrome in a Dutch twin-family study. J Clin Endocrinol Metab. 2006;91(6):2100–2104. doi: 10.1210/jc.2005-1494
  • Risal S, Pei Y, Lu H, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25(12):1894–1904. doi: 10.1038/s41591-019-0666-1
  • Huang G, Aroner SA, Bay CP, et al. Sex-dependent associations of maternal androgen levels with offspring BMI and weight trajectory from birth to early childhood. J Endocrinol Invest. 2021;44(4):851–863. doi: 10.1007/s40618-020-01385-4
  • Homburg R, Gudi A, Shah A, et al. A novel method to demonstrate that pregnant women with polycystic ovary syndrome hyper-expose their fetus to androgens as a possible stepping stone for the developmental theory of PCOS. A pilot study. Reprod Biol Endocrinol. 2017;15(1):61. doi: 10.1186/s12958-017-0282-1
  • Chen X, Koivuaho E, Piltonen TT, et al. Association of maternal polycystic ovary syndrome or anovulatory infertility with obesity and diabetes in offspring: a population-based cohort study. Hum Reprod. 2021;36(8):2345–2357. doi: 10.1093/humrep/deab112
  • Gunning MN, Sir Petermann T, Crisosto N, et al. Cardiometabolic health in offspring of women with PCOS compared to healthy controls: a systematic review and individual participant data meta-analysis. Hum Reprod Update. 2020;26(1):103–117. doi: 10.1093/humupd/dmz036
  • Day F, Karaderi T, Jones MR, et al. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared genetic architecture for different diagnosis criteria. PLoS Genet. 2018;14(12):e1007813. doi: 10.1371/journal.pgen.1007813
  • Azziz R. PCOS in 2015: new insights into the genetics of polycystic ovary syndrome. Nat Rev Endocrinol. 2016;12(2):74–75. doi: 10.1038/nrendo.2015.230
  • Stener-Victorin E, Padmanabhan V, Walters KA, et al. Animal models to understand the etiology and pathophysiology of polycystic ovary syndrome. Endocr Rev. 2020;41(4). doi: 10.1210/endrev/bnaa010
  • Dumesic DA, Goodarzi MO, Chazenbalk GD, et al. Intrauterine environment and polycystic ovary syndrome. Semin Reprod Med. 2014;32(3):159–165. doi: 10.1055/s-0034-1371087
  • Eiras MC, Pinheiro DP, Romcy KAM, et al. Polycystic ovary syndrome: the Epigenetics behind the disease. Reprod Sci. 2022;29(3):680–694. doi: 10.1007/s43032-021-00516-3
  • Felix JF, Cecil CAM. Population DNA methylation studies in the developmental origins of Health and disease (DOHaD) framework. J Dev Orig Health Dis. 2019;10(3):306–313. doi: 10.1017/s2040174418000442
  • Li QN, Guo L, Hou Y, et al. The DNA methylation profile of oocytes in mice with hyperinsulinaemia and hyperandrogenism as detected by single-cell level whole genome bisulphite sequencing (SC-WGBS) technology. Reprod Fertil Dev. 2018;30(12):1713–1719. doi: 10.1071/RD18002
  • Xu N, Chua AK, Jiang H, et al. Early embryonic androgen exposure induces transgenerational epigenetic and metabolic changes. Mol Endocrinol. 2014;28(8):1329–1336. doi: 10.1210/me.2014-1042
  • Xu N, Kwon S, Abbott DH, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS One. 2011;6(11):e27286. doi: 10.1371/journal.pone.0027286
  • Lambertini L, Saul SR, Copperman AB, et al. Intrauterine reprogramming of the polycystic ovary syndrome: evidence from a pilot study of cord blood global methylation analysis. Front Endocrinol. 2017;8:352. doi: 10.3389/fendo.2017.00352
  • Echiburu B, Milagro F, Crisosto N, et al. DNA methylation in promoter regions of genes involved in the reproductive and metabolic function of children born to women with PCOS. Epigenetics. 2020;15(11):1178–1194. doi: 10.1080/15592294.2020.1754674
  • Liu YN, Qin Y, Wu B, et al. DNA methylation in polycystic ovary syndrome: emerging evidence and challenges. Reprod Toxicol. 2022;111:11–19. doi: 10.1016/j.reprotox.2022.04.010
  • Sagvekar P, Shinde G, Mangoli V, et al. Evidence for TET-mediated DNA demethylation as an epigenetic alteration in cumulus granulosa cells of women with polycystic ovary syndrome. Mol Hum Reprod. 2022;28(7). doi: 10.1093/molehr/gaac019
  • Buck Louis GM, Hediger ML, Bell EM, et al. Methodology for establishing a Population-based birth cohort Focusing on Couple fertility and children’s development, the U pstate KIDS study. Paediatric Perinatal Epid. 2014;28(3):191–202. doi: 10.1111/ppe.12121
  • Yeung EH, Louis GB, Lawrence D, et al. Eliciting parental support for the use of newborn blood spots for pediatric research. BMC Med Res Methodol. 2016;16(1). doi: 10.1186/s12874-016-0120-8
  • Yeung EH, Mendola P, Sundaram R, et al. Conception by fertility treatment and offspring deoxyribonucleic acid methylation. Fertil Steril. 2021;116(2):493–504. doi: 10.1016/j.fertnstert.2021.03.011
  • Schisterman EF, Silver RM, Lesher LL, et al. Preconception low-dose aspirin and pregnancy outcomes: results from the EAGeR randomised trial. Lancet. 2014;384(9937):29–36. doi: 10.1016/s0140-6736(14)60157-4
  • Schisterman EF, Silver RM, Perkins NJ, et al. A randomised trial to evaluate the effects of low-dose aspirin in gestation and reproduction: design and baseline characteristics. Paediatr Perinat Epidemiol. 2013;27(6):598–609. doi: 10.1111/ppe.12088
  • Yeung EH, Guan W, Mumford SL, et al. Measured maternal prepregnancy anthropometry and newborn DNA methylation. Epigenomics. 2019;11(2):187–198. doi: 10.2217/epi-2018-0099
  • Polinski KJ, Purdue-Smithe A, Robinson SL, et al. Maternal caffeine intake and DNA methylation in newborn cord blood. Am J Clin Nutr. 2021;115(2):482–491. doi: 10.1093/ajcn/nqab348
  • Robinson SL, Zeng X, Guan W, et al. Perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) and DNA methylation in newborn dried blood spots in the Upstate KIDS cohort. Environ Res. 2021;194:110668. doi: 10.1016/j.envres.2020.110668
  • Andersen NJ, Mondal TK, Preissler MT, et al. Detection of immunoglobulin isotypes from dried blood spots. J Immunol Methods. 2014;404:24–32. doi: 10.1016/j.jim.2013.12.001
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–1369. doi: 10.1093/bioinformatics/btu049
  • Kim K, Pollack AZ, Nobles CJ, et al. Associations between blood cadmium and endocrine features related to PCOS-phenotypes in healthy women of reproductive age: a prospective cohort study. Environ Health. 2021;20(1):64. doi: 10.1186/s12940-021-00749-4
  • Sjaarda LA, Mumford SL, Kuhr DL, et al. Association of testosterone and antimüllerian hormone with time to pregnancy and pregnancy loss in fecund women attempting pregnancy. Fertil Steril. 2018;109(3):540–8.e1. doi: 10.1016/j.fertnstert.2017.11.014
  • Makieva S, Saunders PTK, Norman JE. Androgens in pregnancy: roles in parturition. Hum Reprod Update. 2014;20(4):542–559. doi: 10.1093/humupd/dmu008
  • Legro RS, Schlaff WD, Diamond MP, et al. Total testosterone assays in women with polycystic ovary syndrome: precision and correlation with hirsutism. J Clin Endocrinol Metab. 2010;95(12):5305–5313. doi: 10.1210/jc.2010-1123
  • Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–17049. doi: 10.1073/pnas.0806560105
  • Gervin K, Salas LA, Bakulski KM, et al. Systematic evaluation and validation of reference and library selection methods for deconvolution of cord blood DNA methylation data. Clin Epigenetics. 2019;11(1):125. doi: 10.1186/s13148-019-0717-y
  • Rahmani E, Yedidim R, Shenhav L, et al. GLINT: a user-friendly toolset for the analysis of high-throughput DNA-methylation array data. Bioinformatics. 2017;33(12):1870–1872. doi: 10.1093/bioinformatics/btx059
  • Ripley WNVa BD. Modern applied statistics with S. New York: Springer; 2002. Available from: https://www.stats.ox.ac.uk/pub/MASS4/.
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  • Suderman M, Staley J, French R, et al. Dmrff: identifying differentially methylated regions efficiently with power and control. bioRxiv. 2018. https://doi.org/10.1101/508556
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2021.
  • Katoh M, Katoh M. Identification and characterization of human DAPPER1 and DAPPER2 genes in silico. Int J Oncol. 2003;22(4):907–913. doi: 10.3892/ijo.22.4.907
  • Douville JM, Cheung DYC, Herbert KL, et al. Mechanisms of MEOX1 and MEOX2 regulation of the cyclin dependent kinase inhibitors p21 and p16 in vascular endothelial cells. PLoS One. 2011;6(12):e29099–e. doi: 10.1371/journal.pone.0029099
  • Alexanian M, Przytycki PF, Micheletti R, et al. A transcriptional switch governs fibroblast activation in heart disease. Nature. 2021;595(7867):438–443. doi: 10.1038/s41586-021-03674-1
  • Gaunt TR, Shihab HA, Hemani G, et al. Systematic identification of genetic influences on methylation across the human life course. Genome Bio. 2016;17(1):61. doi: 10.1186/s13059-016-0926-z
  • Robinson SL, Ghassabian A, Sundaram R, et al. The associations of maternal polycystic ovary syndrome and hirsutism with behavioral problems in offspring. Fertil Steril. 2020;113(2):435–443. doi: 10.1016/j.fertnstert.2019.09.034
  • Bell GA, Sundaram R, Mumford SL, et al. Maternal polycystic ovarian syndrome and early offspring development. Hum Reprod. 2018;33(7):1307–1315. doi: 10.1093/humrep/dey087
  • Maleki A, Bashirian S, Soltanian AR, et al. Association between polycystic ovary syndrome and risk of attention-deficit/hyperactivity disorder in offspring: a meta-analysis. Clin Exp Pediatr. 2022;65(2):85–89. doi: 10.3345/cep.2021.00178
  • Mills G, Badeghiesh A, Suarthana E, et al. Polycystic ovary syndrome as an independent risk factor for gestational diabetes and hypertensive disorders of pregnancy: a population-based study on 9.1 million pregnancies. Hum Reprod. 2020;35(7):1666–1674. doi: 10.1093/humrep/deaa099
  • Cioana M, Deng J, Nadarajah A, et al. Prevalence of polycystic ovary syndrome in patients with pediatric type 2 diabetes: a systematic review and meta-analysis. JAMA Netw Open. 2022;5(2):e2147454. doi: 10.1001/jamanetworkopen.2021.47454
  • Liu X, Liu C, Zhang A, et al. Long non-coding RNA SDCBP2-AS1 delays the progression of ovarian cancer via microRNA-100-5p-targeted EPDR1. World J Surg Oncol. 2021 Epub 2021 Jul 4;19(1):199. doi: 10.1186/s12957-021-02295-2
  • Andræ F, Abbott D, Stridsklev S, et al. Sustained maternal hyperandrogenism during PCOS pregnancy reduced by metformin in non-obese women carrying a male fetus. J Clin Endocrinol Metab. 2020;105(12):3762–3770. doi: 10.1210/clinem/dgaa605
  • Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–47. doi: 10.1093/humrep/deh098
  • Bahri Khomami M, Joham AE, Boyle JA, et al. Increased maternal pregnancy complications in polycystic ovary syndrome appear to be independent of obesity-A systematic review, meta-analysis, and meta-regression. Obes Rev. 2019;20(5):659–674. doi: 10.1111/obr.12829
  • ACOG Practice Bulletin No. 194: Polycystic Ovary Syndrome. Obstet Gynecol. 2018;131(6):e157–e71. doi: 10.1097/aog.0000000000002656
  • Fleming TP, Watkins AJ, Velazquez MA, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet. 2018;391(10132):1842–1852. doi: 10.1016/s0140-6736(18)30312-x
  • Sjaarda LA, Mumford SL, Kissell K, et al. Increased androgen, anti-Müllerian hormone, and sporadic anovulation in healthy, eumenorrheic women: a mild PCOS-like phenotype? J Clin Endocrinol Metab. 2014;99(6):2208–2216. doi: 10.1210/jc.2013-3781
  • Sasaki A, Kim B, Murphy KE, et al. Impact of ex vivo sample handling on DNA methylation profiles in human cord blood and neonatal dried blood spots. Front Genet. 2020;11:224. doi: 10.3389/fgene.2020.00224
  • Jiang Y, Wei J, Zhang H, et al. Epigenome wide comparison of DNA methylation profile between paired umbilical cord blood and neonatal blood on Guthrie cards. Epigenetics. 2020;15(5):454–461. doi: 10.1080/15592294.2019.1699983
  • Morin AM, Gatev E, McEwen LM, et al. Maternal blood contamination of collected cord blood can be identified using DNA methylation at three CpGs. Clin Epigenetics. 2017;9(1):75. doi: 10.1186/s13148-017-0370-2
  • Liu Y-N, Qin Y, Wu B, et al. DNA methylation in polycystic ovary syndrome: emerging evidence and challenges. Reprod Toxicol. 2022;111:11–19. doi: 10.1016/j.reprotox.2022.04.010
  • Zawadzki J, Dunaif A. Diagnostic criteria for polycystic ovary syndrome: towards a rational approach. Polycystic Ovary Syndrome. Boston: Blackwell Scientific; 1995. p. 377–384.
  • Piltonen T, Morin-Papunen L, Ollila MM, et al. Women self-reporting PCOS symptoms should not be overlooked. Hum Reprod. 2023;38(1):189–190. doi: 10.1093/humrep/deac251
  • Taponen S, Martikainen H, Jarvelin MR, et al. Hormonal profile of women with self-reported symptoms of oligomenorrhea and/or hirsutism: northern Finland birth cohort 1966 study. J Clin Endocrinol Metab. 2003;88(1):141–147. doi: 10.1210/jc.2002-020982