3,097
Views
0
CrossRef citations to date
0
Altmetric
Research Article

LncRNA NEAT1 aggravates human microvascular endothelial cell injury by inhibiting the Apelin/Nrf2/HO-1 signalling pathway in type 2 diabetes mellitus with obstructive sleep apnoea

, , , , &
Article: 2293409 | Received 06 Sep 2023, Accepted 05 Dec 2023, Published online: 17 Jan 2024

References

  • Mahlangu T, Dludla PV, Nyambuya TM, et al. A systematic review on the functional role of Th1/Th2 cytokines in type 2 diabetes and related metabolic complications. Cytokine. 2020;126:154892. doi: 10.1016/j.cyto.2019.154892
  • Wu H, Jiang M, Liu Q, et al. lncRNA uc.48+ regulates immune and inflammatory reactions mediated by the P2X(7) receptor in type 2 diabetic mice. Exp Ther Med. 2020;20(6):1–15. doi: 10.3892/etm.2020.9360
  • Kent BD, McNicholas WT, Ryan S. Insulin resistance, glucose intolerance and diabetes mellitus in obstructive sleep apnoea. J Thorac Dis. 2015;7(8):1343–1357. doi: 10.3978/j.issn.2072-1439.2015.08.11
  • Zou J, Zhang P, Yu H, et al. Effect of Laparoscopic Roux-en-Y gastric Bypass surgery on obstructive sleep apnea in a Chinese population with obesity and T2DM. Obes Surg. 2015;25(8):1446–53. doi: 10.1007/s11695-014-1510-9
  • Lee CP, Kushida CA, Abisheganaden JA. Epidemiological and pathophysiological evidence supporting links between obstructive sleep apnoea and Type 2 diabetes mellitus. Singapore Med J. 2019;60(2):54–56. doi: 10.11622/smedj.2019015
  • Bhamidipati T, Kumar M, Verma SS, et al. Epigenetic basis of diabetic vasculopathy. Front Endocrinol. 2022;13:989844. doi: 10.3389/fendo.2022.989844
  • Ioja S, Chasens ER, Ng J, et al. Obstructive sleep apnea in adults with type 1 and type 2 diabetes: perspectives from a quality improvement initiative in a university-based diabetes center. BMJ Open Diab Res Care. 2017;5(1):e000433. doi: 10.1136/bmjdrc-2017-000433
  • Xu F, Liu Y, Zhu X, et al. Protective effects and mechanisms of Vaccarin on vascular endothelial dysfunction in diabetic Angiopathy. Int J Mol Sci. 2019;20(18):20(18. doi: 10.3390/ijms20184587
  • Lin W, Zhou Q, Wang C-Q, et al. LncRNAs regulate metabolism in cancer. Int J Biol Sci. 2020;16(7):1194–1206. doi: 10.7150/ijbs.40769
  • Zhang K, Shi Z-M, Chang Y-N, et al. The ways of action of long non-coding RNAs in cytoplasm and nucleus. Gene. 2014;547(1):1–9. doi: 10.1016/j.gene.2014.06.043
  • Yoon JH, Abdelmohsen K, Gorospe M. Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol. 2013;425(19):3723–30. doi: 10.1016/j.jmb.2012.11.024
  • Wu T, Du Y. LncRNAs: from basic research to medical application. Int J Biol Sci. 2017;13(3):295–307. doi: 10.7150/ijbs.16968
  • Chen Q, He Y, Wang X, et al. LncRNA PTGS2 regulates islet β-cell function through the miR-146a-5p/RBP4 axis and its diagnostic value in type 2 diabetes mellitus. Am J Transl Res. 2021;13(10):11316–11328.
  • Du P, Wang J, Han Y, et al. Blocking the LncRNA MALAT1/miR-224-5p/NLRP3 Axis Inhibits the hippocampal inflammatory response in T2DM with OSA. Front Cell Neurosci. 2020;14:97. doi: 10.3389/fncel.2020.00097
  • Alfaifi M, Ali Beg MM, Alshahrani MY, et al. Circulating long non-coding RNAs NKILA, NEAT1, MALAT1, and MIAT expression and their association in type 2 diabetes mellitus. BMJ Open Diabetes Res Care. 2021;9(1):e001821. doi: 10.1136/bmjdrc-2020-001821
  • Liakos CI, Sanidas EA, Perrea DN, et al. Apelin and visfatin plasma levels in healthy individuals with high Normal blood pressure. Am J Hypertens. 2016;29(5):549–52. doi: 10.1093/ajh/hpv136
  • Azizi Y, Faghihi M, Imani A, et al. Post-infarct treatment with [Pyr(1)]apelin-13 improves myocardial function by increasing neovascularization and overexpression of angiogenic growth factors in rats. Eur J Pharmacol. 2015;761:101–8. doi: 10.1016/j.ejphar.2015.04.034
  • Zhou Q, Cao J, Chen L. Apelin/APJ system: a novel therapeutic target for oxidative stress-related inflammatory diseases (Review). Int J Mol Med. 2016;37(5):1159–69. doi: 10.3892/ijmm.2016.2544
  • Hu H, He L, Li L, et al. Apelin/APJ system as a therapeutic target in diabetes and its complications. molecular genetics and metabolism. Mol Gene Metabol. 2016;119(1–2):20–27. doi: 10.1016/j.ymgme.2016.07.012
  • Castan-Laurell I, Dray C, Attané C, et al. Apelin, diabetes, and obesity. Endocrine. 2011;40(1):1–9. doi: 10.1007/s12020-011-9507-9
  • Jiang Y, Wang S, Liu X. Low serum apelin levels are associated with mild cognitive impairment in type 2 diabetic patients. BMC endocrine disorders. BMC Endocr Disord. 2022;22(1):137. doi: 10.1186/s12902-022-01051-1
  • Zhang X, Zhu Y, Zhou Y, et al. activation of Nrf2 signaling by Apelin attenuates renal ischemia reperfusion injury in diabetic rats. Diabetes Metab Syndr Obes. 2020;13:2169–2177. doi: 10.2147/DMSO.S246743
  • Guo X, Shi Y, Du P, et al. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA. Life Sci. 2019;239:117020. doi: 10.1016/j.lfs.2019.117020
  • Zhang LH, Wang J, Tan B-H, et al. The association of lncRNA and mRNA changes in adipose tissue with improved insulin resistance in type 2 obese diabetes mellitus rats after roux-en-Y gastric bypass. Dis Markers. 2022;2022:1–11. doi: 10.1155/2022/8902916
  • Zhang J, Hu C, Jiao X, et al. Potential role of mRnas and LncRNAs in chronic intermittent hypoxia exposure-aggravated atherosclerosis. Front Genet. 2020;11:290. doi: 10.3389/fgene.2020.00290
  • Jia D, He Y, Wang Y, et al. NEAT1: a novel long non-coding RNA involved in mediating type 2 diabetes and its various complications. Curr Pharm Des. 2022;28(16):1342–1350. doi: 10.2174/1381612828666220428093207
  • Shao K, Xi L, Cang Z, et al. Knockdown of NEAT1 exerts suppressive effects on diabetic retinopathy progression via inactivating TGF-β1 and VEGF signaling pathways. J Cell Physiol. 2020;235(12):9361–9369. doi: 10.1002/jcp.29740
  • Shao H, Shen P, Chen J, et al. Expression profile analysis and image observation of miRNA in serum of patients with obstructive sleep apnea-Hypopnea Syndrome. Contrast Media Mol Imaging. 2021;2021:1–7. doi: 10.1155/2021/9731502
  • Kim YK, Maquat LE. Upfront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA. 2019;25(4):407–422. doi: 10.1261/rna.070136.118
  • Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol. 2019;20(7):406–420. doi: 10.1038/s41580-019-0126-2
  • Han S, Cao D, Sha J, et al. LncRNA ZFPM2-AS1 promotes lung adenocarcinoma progression by interacting with UPF1 to destabilize ZFPM2. Mol Oncol. 2020;14(5):1074–1088. doi: 10.1002/1878-0261.12631
  • Li Y, Guo D, Ren M, et al. Long non-coding RNA SNAI3-AS1 promotes the proliferation and metastasis of hepatocellular carcinoma by regulating the UPF1/Smad7 signalling pathway. J Cell Mol Med. 2019;23(9):6271–6282. doi: 10.1111/jcmm.14513
  • Shi Y, Parag S, Patel R, et al. Stabilization of lncRNA GAS5 by a Small Molecule and its implications in diabetic adipocytes. Cell Chem Biol. 2019;26(3):319–330.e6. doi: 10.1016/j.chembiol.2018.11.012
  • Li CG, Ni C-L, Yang M, et al. Honokiol protects pancreatic β cell against high glucose and intermittent hypoxia-induced injury by activating Nrf2/ARE pathway in vitro and in vivo. Biomed Pharmacother. 2018;97:1229–1237. doi: 10.1016/j.biopha.2017.11.063
  • Antushevich H, Wójcik M. Review: apelin in disease. Clin Chim Acta. 2018;483:241–248. doi: 10.1016/j.cca.2018.05.012
  • Loboda A, Damulewicz M, Pyza E, et al. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73(17):3221–47. doi: 10.1007/s00018-016-2223-0
  • Ma H, Wang X, Zhang W, et al. Melatonin suppresses ferroptosis induced by high glucose via activation of the Nrf2/HO-1 signaling pathway in type 2 diabetic osteoporosis. Oxid Med Cell Longev. 2020;2020:1–18. doi: 10.1155/2020/9067610