3,169
Views
0
CrossRef citations to date
0
Altmetric
Review

Cut&tag: a powerful epigenetic tool for chromatin profiling

, , , , & ORCID Icon
Article: 2293411 | Received 07 Sep 2023, Accepted 05 Dec 2023, Published online: 17 Dec 2023

References

  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–14. doi: 10.1126/science.1058040
  • Siggers T, Duyzend MH, Reddy J, et al. Non-DNA-binding cofactors enhance DNA-binding specificity of a transcriptional regulatory complex. Mol Syst Biol. 2011;7(1):555. doi: 10.1038/msb.2011.89
  • Solomon MJ, Varshavsky A. Formaldehyde-mediated DNA-protein crosslinking: a probe for in vivo chromatin structures. Proc Natl Acad Sci U S A. 1985;82(19):6470–6474. doi: 10.1073/pnas.82.19.6470
  • Gilmour DS, Lis JT. In vivo interactions of RNA polymerase II with genes of drosophila melanogaster. Mol Cell Biol. 1985;5(8):2009–2018. doi: 10.1128/MCB.5.8.2009
  • van Schaik T, Vos M, Peric-Hupkes D, et al. Cell cycle dynamics of lamina-associated DNA. EMBO Rep. 2020;21:e50636. doi: 10.15252/embr.202050636
  • Zentner GE, Kasinathan S, Xin B, et al. ChEC-seq kinetics discriminates transcription factor binding sites by DNA sequence and shape in vivo. Nat Commun. 2015;6(1):8733. doi: 10.1038/ncomms9733
  • Skene PJ, Henikoff JG, Henikoff S. Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc. 2018;13(5):1006–1019. doi: 10.1038/nprot.2018.015
  • Weng Z, Ruan F, Chen W, et al. BIND&MODIFY: a long-range method for single-molecule mapping of chromatin modifications in eukaryotes. Genome Biol. 2023;24(1):61. doi: 10.1186/s13059-023-02896-y
  • Kaya-Okur HS, Janssens DH, Henikoff JG, et al. Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc. 2020;15(10):3264–3283. doi: 10.1038/s41596-020-0373-x
  • Kaya-Okur HS, Wu SJ, Codomo CA, et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun. 2019;10(1):1930. doi: 10.1038/s41467-019-09982-5
  • Henikoff S, Henikoff JG, Kaya-Okur HS, et al. Efficient chromatin accessibility mapping in situ by nucleosome-tethered tagmentation. Elife. 2020;9. doi: 10.7554/eLife.63274
  • Janssens DH, Meers MP, Wu SJ, et al. Automated CUT&Tag profiling of chromatin heterogeneity in mixed-lineage leukemia. Nat Genet. 2021;53(11):1586–1596. doi: 10.1038/s41588-021-00941-9
  • Rhodes CT, Thompson JJ, Mitra A, et al. An epigenome atlas of neural progenitors within the embryonic mouse forebrain. Nat Commun. 2022;13(1):4196. doi: 10.1038/s41467-022-31793-4
  • Li M, Liu Q, Xie S, et al. LncRNA TCONS_00323213 promotes myogenic differentiation by interacting with PKNOX2 to upregulate MyoG in porcine satellite cells. Int J Mol Sci. 2023;24(7):24. doi: 10.3390/ijms24076773
  • Susami K, Ikeda S, Hoshino Y, et al. Genome-wide profiling of histone H3K4me3 and H3K27me3 modifications in individual blastocysts by CUT&Tag without a solid support (NON-TiE-UP CUT&Tag). Sci Rep. 2022;12(1):12. doi: 10.1038/s41598-022-15417-x
  • Zhou C, Halstead MM, Bonnet‐Garnier A, et al. Histone remodeling reflects conserved mechanisms of bovine and human preimplantation development. EMBO Reports. 2023;24(3):24. doi: 10.15252/embr.202255726
  • Akdogan-Ozdilek B, Duval KL, Meng FW, et al. Identification of chromatin states during zebrafish gastrulation using CUT&RUN and CUT&Tag. Dev Dyn. 2022;251:729–42. doi: 10.1002/dvdy.430
  • Ahmad K, Henikoff S, Bosco G. The H3.3K27M oncohistone antagonizes reprogramming in drosophila. PLoS Genet. 2021;17(7):e1009225. doi: 10.1371/journal.pgen.1009225
  • Srivastava S, Holmes MJ, White MW, et al. Toxoplasma gondii AP2XII-2 Contributes to Transcriptional Repression for Sexual Commitment. mSphere. 2023;8(2):e0060622. doi: 10.1128/msphere.00606-22
  • Wu L, Luo Z, Shi Y, et al. A cost-effective tsCuT&Tag method for profiling transcription factor binding landscape. J Integr Plant Biol. 2022;64(11):2033–2038. doi: 10.1111/jipb.13354
  • Ouyang W, Luan S, Xiang X, et al. Profiling plant histone modification at single-cell resolution using snCuT&Tag. Plant Biotechnol J. 2022;20(3):420–422. doi: 10.1111/pbi.13768
  • Wysocka J, Swigut T, Xiao H, et al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature. 2006;442(7098):86–90. doi: 10.1038/nature04815
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi: 10.1038/cr.2011.22
  • Millán-Zambrano G, Burton A, Bannister AJ, et al. Histone post-translational modifications — cause and consequence of genome function. Nat Rev Genet. 2022;23(9):563–580. doi: 10.1038/s41576-022-00468-7
  • Lin Y, Qiu T, Wei G, et al. Role of histone post-translational modifications in inflammatory diseases. Front Immunol. 2022;13: doi: 10.3389/fimmu.2022.852272
  • Park PJ. ChIP-seq: advantages and challenges of a maturing technology. Nat Rev Genet. 2009;10:669–80. doi: 10.1038/nrg2641
  • Salma M, Andrieu-Soler C, Deleuze V, et al. High-throughput methods for the analysis of transcription factors and chromatin modifications: low input, single cell and spatial genomic technologies. Blood Cells Mol Dis. 2023;101:102745. doi: 10.1016/j.bcmd.2023.102745
  • Gu X, Hua Y, Yu J, et al. Epigenetic drug library screening reveals targeting DOT1L abrogates NAD(+) synthesis by reprogramming H3K79 methylation in uveal melanoma. J Pharm Anal. 2023;13:24–38. doi: 10.1016/j.jpha.2022.11.008
  • Sumimoto H, Takano A, Igarashi T, et al. Oncogenic epidermal growth factor receptor signal-induced histone deacetylation suppresses chemokine gene expression in human lung adenocarcinoma. Sci Rep. 2023;13(1):5087. doi: 10.1038/s41598-023-32177-4
  • Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574(7779):575–580. doi: 10.1038/s41586-019-1678-1
  • Wang N, Wang W, Wang X, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction. Circ Res. 2022;131:893–908. doi: 10.1161/CIRCRESAHA.122.320488
  • Yu J, Chai P, Xie M, et al. Histone lactylation drives oncogenesis by facilitating m(6)A reader protein YTHDF2 expression in ocular melanoma. Genome Biol. 2021;22:85. doi: 10.1186/s13059-021-02308-z
  • Galle E, Wong CW, Ghosh A, et al. H3K18 lactylation marks tissue-specific active enhancers. Genome Biol. 2022;23(1):207. doi: 10.1186/s13059-022-02775-y
  • Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172(4):650–665. doi: 10.1016/j.cell.2018.01.029
  • Papavassiliou KA, Papavassiliou AG. Transcription Factor Drug Targets. J Cell Biochem. 2016;117(12):2693–2696. doi: 10.1002/jcb.25605
  • Yang XC, Sabath I, Kunduru L, et al. A conserved interaction that is essential for the biogenesis of histone locus bodies. J Biol Chem. 2014;289:33767–82. doi: 10.1074/jbc.M114.616466
  • Saisho Y. Beta-cell dysfunction: its critical role in prevention and management of type 2 diabetes. World J Diabetes. 2015;6:109–24. doi: 10.4239/wjd.v6.i1.109
  • Qiao J, Zhang Z, Ji S, et al. A distinct role of STING in regulating glucose homeostasis through insulin sensitivity and insulin secretion. Proc Natl Acad Sci U S A. 2022;119(7):119. doi: 10.1073/pnas.2101848119
  • Zhang L, Huo Q, Ge C, et al. ZNF143-mediated H3K9 trimethylation upregulates CDC6 by activating MDIG in hepatocellular carcinoma. Cancer Res. 2020;80(12):2599–2611. doi: 10.1158/0008-5472.CAN-19-3226
  • Ye B, Shen W, Zhang C, et al. The role of ZNF143 overexpression in rat liver cell proliferation. BMC Genomics. 2022;23(1):483. doi: 10.1186/s12864-022-08714-2
  • Manceau L, Richard Albert J, Lollini PL, et al. Divergent transcriptional and transforming properties of PAX3-FOXO1 and PAX7-FOXO1 paralogs. PLoS Genet. 2022;18(5):e1009782. doi: 10.1371/journal.pgen.1009782
  • Huang Z, Yang R, Li R, et al. Mesenchymal Mycn participates in odontoblastic lineage commitment by regulating Kruppel-like factor 4 (Klf4) in mice. Stem Cell Res Ther. 2022;13:78. doi: 10.1186/s13287-022-02749-8
  • Yang Y, Zhang L, Xiong C, et al. HIRA complex presets transcriptional potential through coordinating depositions of the histone variants H3.3 and H2A.Z on the poised genes in mEscs. Nucleic Acids Res. 2022;50(1):191–206. doi: 10.1093/nar/gkab1221
  • Liu B, Liu C, Ma B, et al. PA1 participates in the maintenance of blood-testis barrier integrity via cooperation with JUN in the Sertoli cells of mice. Cell Biosci. 2022;12:41. doi: 10.1186/s13578-022-00773-y
  • Di XP, Jin X, Ai JZ, et al. YAP/Smad3 promotes pathological extracellular matrix microenviroment-induced bladder smooth muscle proliferation in bladder fibrosis progression. MedComm. 2022;3(2020):e169. doi: 10.1002/mco2.169
  • Cheng Q, Wang J, Li M, et al. CircSV2b participates in oxidative stress regulation through miR-5107-5p-Foxk1-Akt1 axis in Parkinson’s disease. Redox Biol. 2022;56:102430. doi: 10.1016/j.redox.2022.102430
  • Xu J, Song F, Lyu H, et al. Subtype-specific 3D genome alteration in acute myeloid leukaemia. Nature. 2022;611(7935):387–398. doi: 10.1038/s41586-022-05365-x
  • Long Y, Chong T, Lyu X, et al. FOXD1-dependent RalA-ANXA2-Src complex promotes CTC formation in breast cancer. J Exp Clin Cancer Res. 2022;41(1):301. doi: 10.1186/s13046-022-02504-0
  • Lei T, Zhang W, He Y, et al. ZNF276 promotes the malignant phenotype of breast carcinoma by activating the CYP1B1-mediated Wnt/beta-catenin pathway. Cell Death Dis. 2022;13:781. doi: 10.1038/s41419-022-05223-8
  • Huang Y, Wang X, Hu R, et al. SOX2 regulates paclitaxel resistance of A549 non‑small cell lung cancer cells via promoting transcription of ClC‑3. Oncol Rep. 2022;48(4):48. doi: 10.3892/or.2022.8396
  • Li P, Mi Q, Yan S, et al. Characterization of circSCL38A1 as a novel oncogene in bladder cancer via targeting ILF3/TGF-beta2 signaling axis. Cell Death Dis. 2023;14:59. doi: 10.1038/s41419-023-05598-2
  • Horie M, Tanaka H, Suzuki M, et al. An integrative epigenomic approach identifies ELF3 as an oncogenic regulator in ASCL1‐positive neuroendocrine carcinoma. Cancer Sci. 2023;114:2596–608. doi: 10.1111/cas.15764
  • Chen Y, Yang P, Wang J, et al. p53 directly downregulates the expression of CDC20 to exert anti-tumor activity in mantle cell lymphoma. Exp Hematol Oncol. 2023;12(1):28. doi: 10.1186/s40164-023-00381-7
  • Carter B, Ku WL, Kang JY, et al. Mapping histone modifications in low cell number and single cells using antibody-guided chromatin tagmentation (ACT-seq). Nat Commun. 2019;10(1):3747. doi: 10.1038/s41467-019-11559-1
  • Grosselin K, Durand A, Marsolier J, et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat Genet. 2019;51(6):1060–1066. doi: 10.1038/s41588-019-0424-9
  • Patty BJ, Hainer SJ. Transcription factor chromatin profiling genome-wide using uliCuT&Run in single cells and individual blastocysts. Nat Protoc. 2021;16(5):2633–2666. doi: 10.1038/s41596-021-00516-2
  • Granja JM, Corces MR, Pierce SE, et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat Genet. 2021;53(3):403–411. doi: 10.1038/s41588-021-00790-6
  • Tarbell ED, Liu T. HMMRATAC: a hidden Markov ModeleR for ATAC-seq. Nucleic Acids Res. 2019;47(16):e91. doi: 10.1093/nar/gkz533
  • Cusanovich DA, Daza R, Adey A, et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science. 2015;348:910–4. doi: 10.1126/science.aab1601
  • Rosenberg AB, Roco CM, Muscat RA, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;360(6385):176–182. doi: 10.1126/science.aam8999
  • Bartosovic M, Kabbe M, Castelo-Branco G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat Biotechnol. 2021;39(7):825–835. doi: 10.1038/s41587-021-00869-9
  • Bartlett DA, Dileep V, Handa T, et al. High-throughput single-cell epigenomic profiling by targeted insertion of promoters (TIP-seq). J Cell Bio. 2021;220(12):220. doi: 10.1083/jcb.202103078
  • Stuart T, Butler A, Hoffman P, et al. Comprehensive Integration of single-cell data. Cell. 2019;177:1888–902 e21. doi: 10.1016/j.cell.2019.05.031
  • Efremova M, Teichmann SA. Computational methods for single-cell omics across modalities. Nat Methods. 2020;17(1):14–17. doi: 10.1038/s41592-019-0692-4
  • Xiong H, Luo Y, Wang Q, et al. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat Methods. 2021;18(6):652–660. doi: 10.1038/s41592-021-01129-z
  • Wang Q, Xiong H, Ai S, et al. CoBATCH for high-throughput single-cell epigenomic profiling. Mol Cell. 2019;76:206–16 e7. doi: 10.1016/j.molcel.2019.07.015
  • Zhu C, Zhang Y, Li YE, et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat Methods. 2021;18(3):283–292. doi: 10.1038/s41592-021-01060-3
  • Zhang B, Srivastava A, Mimitou E, et al. Characterizing cellular heterogeneity in chromatin state with scCuT&Tag-pro. Nat Biotechnol. 2022;40(8):1220–1230. doi: 10.1038/s41587-022-01250-0
  • Li R, Grimm SA, Wade PA. CUT&Tag-BS for simultaneous profiling of histone modification and DNA methylation with high efficiency and low cost. Cell Rep Methods. 2021;1. doi: 10.1016/j.crmeth.2021.100118
  • Janssens DH, Otto DJ, Meers MP, et al. CUT&Tag2for1: a modified method for simultaneous profiling of the accessible and silenced regulome in single cells. Genome Biol. 2022;23(1):81. doi: 10.1186/s13059-022-02642-w
  • Gopalan S, Wang Y, Harper NW, et al. Simultaneous profiling of multiple chromatin proteins in the same cells. Mol Cell. 2021;81:4736–46 e5. doi: 10.1016/j.molcel.2021.09.019
  • Meers MP, Llagas G, Janssens DH, et al. Multifactorial profiling of epigenetic landscapes at single-cell resolution using MulTI-Tag. Nat Biotechnol. 2023;41(5):708–716. doi: 10.1038/s41587-022-01522-9
  • Stuart T, Hao S, Zhang B, et al. Nanobody-tethered transposition enables multifactorial chromatin profiling at single-cell resolution. Nat Biotechnol. 2023;41(6):806–812. doi: 10.1038/s41587-022-01588-5
  • Bartosovic M, Castelo-Branco G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat Biotechnol. 2023;41(6):794–805. doi: 10.1038/s41587-022-01535-4
  • Deng Y, Bartosovic M, Kukanja P, et al. Spatial-CUT&Tag: spatially resolved chromatin modification profiling at the cellular level. Science. 2022;375:681–6. doi: 10.1126/science.abg7216
  • Lu T, Ang CE, Zhuang X. Spatially resolved epigenomic profiling of single cells in complex tissues. Cell. 2023;186(10):2275–2279. doi: 10.1016/j.cell.2023.04.006
  • Zhang D, Deng Y, Kukanja P, et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature. 2023;616:113–22. doi: 10.1038/s41586-023-05795-1
  • Sen D, Gilbert W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature. 1988;334(6180):364–366. doi: 10.1038/334364a0
  • Masuda-Sasa T, Polaczek P, Peng XP, et al. Processing of G4 DNA by Dna2 helicase/nuclease and replication protein a (RPA) provides insights into the mechanism of Dna2/RPA substrate recognition. J Biol Chem. 2008;283(36):24359–24373. doi: 10.1074/jbc.M802244200
  • Li C, Wang H, Yin Z, et al. Ligand-induced native G-quadruplex stabilization impairs transcription initiation. Genome Res. 2021;31(9):1546–1560. doi: 10.1101/gr.275431.121
  • Yadav T, Zhang JM, Ouyang J, et al. TERRA and RAD51AP1 promote alternative lengthening of telomeres through an R- to D-loop switch. Mol Cell. 2022;82:3985–4000 e4. doi: 10.1016/j.molcel.2022.09.026
  • Kosiol N, Juranek S, Brossart P, et al. G-quadruplexes: a promising target for cancer therapy. Mol Cancer. 2021;20(1):40. doi: 10.1186/s12943-021-01328-4
  • Asamitsu S, Takeuchi M, Ikenoshita S, et al. Perspectives for applying G-Quadruplex structures in neurobiology and neuropharmacology. Int J Mol Sci. 2019;20(12):20. doi: 10.3390/ijms20122884
  • Vijay Kumar MJ, Morales R, Tsvetkov AS. G-quadruplexes and associated proteins in aging and Alzheimer’s disease. Front Aging. 2023;4:1164057. doi: 10.3389/fragi.2023.1164057
  • Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol. 2020;21(3):167–178. doi: 10.1038/s41580-019-0206-3
  • Garcia-Muse T, Aguilera A. R loops: from physiological to pathological roles. Cell. 2019;179:604–18. doi: 10.1016/j.cell.2019.08.055
  • Herrera-Moyano E, Mergui X, Garcia-Rubio ML, et al. The yeast and human FACT chromatin-reorganizing complexes solve R-loop-mediated transcription-replication conflicts. Genes Dev. 2014;28:735–48. doi: 10.1101/gad.234070.113
  • Cristini A, Groh M, Kristiansen MS, et al. RNA/DNA hybrid interactome identifies DXH9 as a Molecular Player in transcriptional termination and R-Loop-associated DNA Damage. Cell Rep. 2018;23(6):1891–1905. doi: 10.1016/j.celrep.2018.04.025
  • Hansel-Hertsch R, Spiegel J, Marsico G, et al. Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing. Nat Protoc. 2018;13(3):551–564. doi: 10.1038/nprot.2017.150
  • Shen J, Varshney D, Simeone A, et al. Promoter G-quadruplex folding precedes transcription and is controlled by chromatin. Genome Bio. 2021;22(1):22. doi: 10.1186/s13059-021-02346-7
  • Zheng KW, Zhang JY, He YD, et al. Detection of genomic G-quadruplexes in living cells using a small artificial protein. Nucleic Acids Res. 2020;48(20):11706–11720. doi: 10.1093/nar/gkaa841
  • Lyu J, Shao R, Kwong Yung PY, et al. Genome-wide mapping of G-quadruplex structures with CUT&Tag. Nucleic Acids Res. 2022;50(3):e13. doi: 10.1093/nar/gkab1073
  • Hui WWI, Simeone A, Zyner KG, et al. Single-cell mapping of DNA G-quadruplex structures in human cancer cells. Sci Rep. 2021;11(1):23641. doi: 10.1038/s41598-021-02943-3
  • Sanz LA, Chedin F. High-resolution, strand-specific R-loop mapping via S9.6-based DNA-RNA immunoprecipitation and high-throughput sequencing. Nat Protoc. 2019;14:1734–55. doi: 10.1038/s41596-019-0159-1
  • Sanz LA, Castillo-Guzman D, Chedin F. 2021. Mapping R-Loops and RNA: DNA hybrids with S9.6-based immunoprecipitation methods. J Vis Exp. (174). doi: 10.3791/62455.
  • Chen JY, Zhang X, Fu XD, et al. R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nat Protoc. 2019;14(5):1661–1685. doi: 10.1038/s41596-019-0154-6
  • Wang K, Wang H, Li C, et al. Genomic profiling of native R loops with a DNA-RNA hybrid recognition sensor. Sci Adv. 2021;7(8). doi: 10.1126/sciadv.abe3516
  • Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9(9):R137. doi: 10.1186/gb-2008-9-9-r137
  • Tedesco M, Giannese F, Lazarevic D, et al. Chromatin velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat Biotechnol. 2022;40(2):235–244. doi: 10.1038/s41587-021-01031-1
  • Khyzha N, Henikoff S, Ahmad K. Profiling RNA at chromatin targets in situ by antibody-targeted tagmentation. Nat Methods. 2022;19(11):1383–1392. doi: 10.1038/s41592-022-01618-9