1,698
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chronic intermittent ethanol exposure-induced m6A modifications around mRNA stop codons of opioid receptor genes

, & ORCID Icon
Article: 2294515 | Received 05 Aug 2023, Accepted 05 Dec 2023, Published online: 20 Dec 2023

References

  • Ducci F, Goldman D. Genetic approaches to addiction: genes and alcohol. Addiction. 2008;103(9):1414–11. doi: 10.1111/j.1360-0443.2008.02203.x
  • Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci, USA. 1974;71:3971–5. doi: 10.1073/pnas.71.10.3971
  • Meyer KD, Saletore Y, Zumbo P, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell. 2012;149:1635–46. doi: 10.1016/j.cell.2012.05.003
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485(7397):201–206. doi: 10.1038/nature11112
  • Cui Q, Shi H, Ye P, et al. m(6)A RNA methylation regulates the Self-Renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 2017;18:2622–34. doi: 10.1016/j.celrep.2017.02.059
  • Rowles J, Wong M, Powers R, et al. FTO , RNA epigenetics and epilepsy. Epigenetics. 2012;7(10):1094–1097. doi: 10.4161/epi.21977
  • Du T, Rao S, Wu L, et al. An association study of the m6A genes with major depressive disorder in Chinese han population. J Affect Disord. 2015;183:279–286. doi: 10.1016/j.jad.2015.05.025
  • Engel M, Eggert C, Kaplick PM, et al. The role of m(6)A/m-RNA methylation in stress Response regulation. Neuron. 2018;99:389–403 e9. doi: 10.1016/j.neuron.2018.07.009
  • Schuckit MA. Alcohol-use disorders. Lancet. 2009;373(9662):492–501. doi: 10.1016/S0140-6736(09)60009-X
  • Mahna D, Puri S, Sharma S. DNA methylation signatures: biomarkers of drug and alcohol abuse. Mutat Res Rev Mutat Res. 2018;777:19–28. doi: 10.1016/j.mrrev.2018.06.002
  • Zhang H, Gelernter J. Review: DNA methylation and alcohol use disorders: progress and challenges. Am J Addict. 2017;26:502–15. doi: 10.1111/ajad.12465
  • Gatta E, Grayson DR, Auta J, et al. Genome-wide methylation in alcohol use disorder subjects: implications for an epigenetic regulation of the cortico-limbic glucocorticoid receptors (NR3C1). Mol Psychiatry. 2021;26:1029–41. doi: 10.1038/s41380-019-0449-6
  • Liu Y, Zhang H. RNA m6A modification changes in postmortem nucleus accumbens of subjects with alcohol use disorder: a Pilot study. Genes (Basel). 2022;13(6):958. doi: 10.3390/genes13060958
  • Herz A. Endogenous opioid systems and alcohol addiction. Psychopharmacol (Berl). 1997;129(2):99–111. doi: 10.1007/s002130050169
  • Gianoulakis C. Influence of the endogenous opioid system on high alcohol consumption and genetic predisposition to alcoholism. J Psychiatry Neurosci. 2001;26:304–18.
  • Turchan J, Przewlocka B, Toth G, et al. The effect of repeated administration of morphine, cocaine and ethanol on mu and delta opioid receptor density in the nucleus accumbens and striatum of the rat. Neuroscience. 1999;91(3):971–977. doi: 10.1016/S0306-4522(98)00637-X
  • Zhang H, Luo X, Kranzler HR, et al. Association between two mu-opioid receptor gene (OPRM1) haplotype blocks and drug or alcohol dependence. Hum Mol Genet. 2006;15:807–19. doi: 10.1093/hmg/ddl024
  • Zhang H, Kranzler HR, Yang BZ, et al. The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol Psychiatry. 2008;13(5):531–543. doi: 10.1038/sj.mp.4002035
  • Zhang H, Herman AI, Kranzler HR, et al. Hypermethylation of OPRM1 promoter region in European Americans with alcohol dependence. J Hum Genet. 2012;57(10):670–675. doi: 10.1038/jhg.2012.98
  • Lin Y, Kranzler HR, Farrer LA, et al. An analysis of the effect of mu-opioid receptor gene (OPRM1) promoter region DNA methylation on the response of naltrexone treatment of alcohol dependence. Pharmacogenomics J. 2020;20(5):672–680. doi: 10.1038/s41397-020-0158-1
  • Niu Y, Zhao X, Wu YS, et al. N6-methyl-adenosine (m6A) in RNA: an old modification with a novel epigenetic function. Int J Genomics Proteomics. 2013;11(1):8–17. doi: 10.1016/j.gpb.2012.12.002
  • Imanishi M, Tsuji S, Suda A, et al. Detection of N(6)-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). 2017;53:12930–3. doi: 10.1039/C7CC07699A
  • Pandey RR, Pillai RS. Counting the cuts: MAZTER-Seq quantifies m(6)A levels using a methylation-sensitive ribonuclease. Cell. 2019;178:515–7. doi: 10.1016/j.cell.2019.07.006
  • Chen HX, Zhang Z, Ma DZ, et al. Mapping single-nucleotide m(6)A by m(6)A-REF-seq. Methods. 2022;203:392–8. doi: 10.1016/j.ymeth.2021.06.013
  • McClintick JN, Thapa K, Liu Y, et al. Effects of chronic intermittent ethanol exposure and withdrawal on neuroblastoma cell transcriptome. Alcohol. 2020;85:119–126. doi: 10.1016/j.alcohol.2019.12.004
  • Bell RL, Rodd ZA, Engleman EA, et al. Scheduled access alcohol drinking by alcohol-preferring (P) and high-alcohol-drinking (HAD) rats: modeling adolescent and adult binge-like drinking. Alcohol. 2014;48(3):225–234. doi: 10.1016/j.alcohol.2013.10.004
  • Jury NJ, Pollack GA, Ward MJ, et al. Chronic ethanol during adolescence impacts corticolimbic dendritic spines and behavior. Alcohol Clin Exp Res. 2017;41(7):1298–1308. doi: 10.1111/acer.13422
  • Melendez RI. Intermittent (every-other-day) drinking induces rapid escalation of ethanol intake and preference in adolescent and adult C57BL/6J mice. Alcohol Clin Exp Res. 2011;35(4):652–658. doi: 10.1111/j.1530-0277.2010.01383.x
  • Hess ME, Hess S, Meyer KD, et al. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci. 2013;16:1042–8. doi: 10.1038/nn.3449
  • Heinz A, Reimold M, Wrase J, et al. Correlation of stable elevations in striatal mu-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch Gen Psychiatry. 2005;62:57–64. doi: 10.1001/archpsyc.62.1.57
  • Xia Z, Tang M, Ma J, et al. Epitranscriptomic editing of the RNA N6-methyladenosine modification by dCasrx conjugated methyltransferase and demethylase. Nucleic Acids Res. 2021;49(13):7361–7374. doi: 10.1093/nar/gkab517
  • Liu XM, Zhou J, Mao Y, et al. Programmable RNA N(6)-methyladenosine editing by CRISPR-Cas9 conjugates. Nat Chem Biol. 2019;15:865–71. doi: 10.1038/s41589-019-0327-1
  • Meyer KD, Patil DP, Zhou J, et al. 5’ UTR m(6)A promotes cap-independent translation. Cell. 2015;163:999–1010. doi: 10.1016/j.cell.2015.10.012
  • Kane SE, Beemon K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol Cell Biol. 1985;5(9):2298–2306. doi: 10.1128/MCB.5.9.2298
  • Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–772. doi: 10.1038/nmeth.3453