1,350
Views
0
CrossRef citations to date
0
Altmetric
Research Article

History of exposure to copper influences transgenerational gene expression responses in Daphnia magna

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon &
Article: 2296275 | Received 28 Jul 2023, Accepted 13 Dec 2023, Published online: 28 Dec 2023

References

  • Carpenter SR, Stanley EH, Vander Zanden MJ. State of the world’s freshwater ecosystems: physical, chemical, and biological changes. Annu Rev Environ Resour. 2011;36(1):75–15. doi: 10.1146/annurev-environ-021810-094524
  • Gardner RC, Finlayson C. Global wetland outlook: state of the world’s wetlands and their services to people, Ramsar convention secretariat. Florida, US: Secretariat of the Ramsar Convention; 2018.
  • Turak E, Harrison I, Dudgeon D, et al. Essential biodiversity variables for measuring change in global freshwater biodiversity. Biol Conserv. 2017;213:272–279. doi: 10.1016/j.biocon.2016.09.005
  • Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1–14. doi: 10.1155/2019/6730305
  • Ali H, Khan E. Bioaccumulation of non-essential hazardous heavy metals and metalloids in freshwater fish. Risk to human health. Environ Chem Lett. 2018;16(3):903–917. doi: 10.1007/s10311-018-0734-7
  • Closs GP, Krkosek M, Olden JD. Conservation of freshwater fishes. United Kingdom: Cambridge University Press; 2016.
  • Adams W, Blust R, Dwyer R, et al. Bioavailability assessment of metals in freshwater environments: a historical review. Environ Toxicol Chem. 2020;39(1):48–59. doi: 10.1002/etc.4558
  • Butcher J, Diamond J, Bearr J, et al. Toxicity models of pulsed copper exposure to Pimephales promelas and Daphnia magna. Environ Toxicol Chem. 2006;25(9):2541–2550. doi: 10.1897/05-630R.1
  • Venâncio C, Ribeiro R, Soares AMVM, et al. Survival recovery rates by six clonal lineages of daphnia longispina after intermittent exposures to copper. Chemosphere. 2021;264:128403. doi: 10.1016/j.chemosphere.2020.128403
  • Chain FJJ, Finlayson S, Crease T, et al. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages. Aquat Toxicol. 2019;210:85–97. doi: 10.1016/j.aquatox.2019.02.016
  • Jansen M, De Meester L, Cielen A, et al. The interplay of past and current stress exposure on the water flea daphnia. Funct Ecol. 2011;25(5):974–982. doi: 10.1111/j.1365-2435.2011.01869.x
  • Schunck F, Liess M. Time between sequential exposures to multiple stress turns antagonism into synergism. Environ Sci Technol. 2022;56(20):14660–14667. doi: 10.1021/acs.est.2c04345
  • Abdullahi M, Zhou J, Dandhapani V, et al. Historical exposure to chemicals reduces tolerance to novel chemical stress in Daphnia (waterflea). Mol Ecol. 2022;31(11):3098–3111. doi: 10.1111/mec.16451
  • Poynton HC, Zuzow R, Loguinov AV, et al. Gene expression profiling in Daphnia magna, part II: validation of a copper specific gene expression signature with effluent from two copper mines in California. Environ Sci Technol. 2008b;42(16):6257–6263. doi: 10.1021/es800262k
  • Cuenca-Cambronero M, Pantel JH, Marshall H, et al. Evolutionary mechanisms underpinning fitness response to multiple stressors in Daphnia. Evol Appl. 2021;14(10):2457–2469. doi: 10.1111/eva.13258
  • Jeremias G, Barbosa J, Marques SM, et al. Transgenerational inheritance of DNA hypomethylation in Daphnia magna in response to salinity stress. Environ Sci Technol. 2018b;52:10114–10123. doi: 10.1021/acs.est.8b03225
  • Kimberly DA, Salice CJ. Multigenerational contaminant exposures produce non-monotonic, transgenerational responses in Daphnia magna. Environ Pollut. 2015;207:176–182. doi: 10.1016/j.envpol.2015.09.020
  • Shaw JR, Colbourne JK, Davey JC, et al. Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. BMC Genomics. 2007;8(1):477. doi: 10.1186/1471-2164-8-477
  • Athanasio CG, Sommer U, Viant MR, et al. Use of 5-azacytidine in a proof-of-concept study to evaluate the impact of pre-natal and post-natal exposures, as well as within generation persistent DNA methylation changes in Daphnia. Ecotoxicology. 2018;27(5):556–568. doi: 10.1007/s10646-018-1927-3
  • Barata C, Campos B, Rivetti C, et al. Validation of a two-generational reproduction test in Daphnia magna: an interlaboratory exercise. Sci Total Environ. 2017;579:1073–1083. doi: 10.1016/j.scitotenv.2016.11.066
  • Neuparth T, Machado AM, Montes R, et al. Transgenerational inheritance of chemical-induced signature: a case study with simvastatin. Environ Int. 2020;144:106020. doi: 10.1016/j.envint.2020.106020
  • Yin J, Zhou M, Lin Z, et al. Transgenerational effects benefit offspring across diverse environments: a meta‐analysis in plants and animals. Ecol Lett. 2019;22(11):1976–1986. doi: 10.1111/ele.13373
  • Castro BB, Freches AR, Rodrigues M, et al. Transgenerational effects of toxicants: an extension of the daphnia 21-day chronic assay? Arch Environ Contam Toxicol. 2018;74(4):616–626. doi: 10.1007/s00244-018-0507-0
  • Shaw JLA, Judy JD, Kumar A, et al. Incorporating transgenerational epigenetic Inheritance into ecological risk assessment frameworks. Environ Sci Technol. 2017;51:9433–9445. doi: 10.1021/acs.est.7b01094
  • Burggren W. Epigenetic inheritance and its role in evolutionary biology: re-evaluation and new perspectives. Biology. 2016;5(2):24. doi: 10.3390/biology5020024
  • Jeremias G, Barbosa J, Marques SM, et al. Synthesizing the role of epigenetics in the response and adaptation of species to climate change in freshwater ecosystems. Mol Ecol. 2018a;27(13):2790–2806. doi: 10.1111/mec.14727
  • Jeremias G, Gonçalves FJM, Asselman J, et al. Epigenetic regulation: the cross-talk among development, adaptive strategies, and microevolutionary change. In: Vaschetto LM, editor. Epigenetics, development, ecology and evolution. Springer; 2022a. pp. 5–33. doi: 10.1007/978-3-031-13771-6_2.
  • Hanson MA, Skinner MK. Developmental origins of epigenetic transgenerational inheritance. Environ Epigenetics. 2016;2(1):1–9. doi: 10.1093/eep/dvw002
  • Lindeman LC, Thaulow J, Song Y, et al. Epigenetic, transcriptional and phenotypic responses in two generations of Daphnia magna exposed to the DNA methylation inhibitor 5-azacytidine. Environ Epigenetics. 2019;5(3):1–12. doi: 10.1093/eep/dvz016
  • Harris KDM, Bartlett NJ, Lloyd VK. Daphnia as an emerging epigenetic model organism. Genet Res Int. 2012;2012:1–8. doi: 10.1155/2012/147892
  • Kim HJ, Koedrith P, Seo YR. Ecotoxicogenomic approaches for understanding molecular mechanisms of environmental chemical toxicity using aquatic invertebrate, daphnia model organism. Int J Mol Sci. 2015;16(12):12261–12287. doi: 10.3390/ijms160612261
  • Shaw JR, Pfrender ME, Eads BD, et al. Daphnia as an emerging model for toxicological genomics. Adv Exp Biol. 2008;2:165–219. doi: 10.1016/S1872-2423(08)00005-7
  • Asselman J, Semmouri I, Jackson CE, et al. Genome-wide stress responses to copper and arsenic in a field population of Daphnia. Environ Sci Technol. 2019;53:3850–3859. doi: 10.1021/acs.est.8b06720
  • Jeremias G, Veloso T, Gonçalves FJM, et al. Multigenerational DNA methylation responses to copper exposure in Daphnia: potential targets for epigenetic biomarkers? Chemosphere. 2022b;308:136231. doi: 10.1016/j.chemosphere.2022.136231
  • Kvist J, Athanàsio CG, Pfrender ME, et al. A comprehensive epigenomic analysis of phenotypically distinguishable, genetically identical female and male Daphnia pulex. BMC Genomics. 2020;21(1):17. doi: 10.1186/s12864-019-6415-5
  • Vandegehuchte MB, De Coninck D, Vandenbrouck T, et al. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to zn exposure history in Daphnia magna. Environ Pollut. 2010a;158(10):3323–3329. doi: 10.1016/j.envpol.2010.07.023
  • Vandegehuchte MB, Vandenbrouck T, Coninck DD, et al. Can metal stress induce transferable changes in gene transcription in Daphnia magna? Aquat Toxicol. 2010c;97(3):188–195. doi: 10.1016/j.aquatox.2009.07.013
  • Bell AM, Stein LR. Transgenerational and developmental plasticity at the molecular level: lessons from Daphnia. Mol Ecol. 2017;26(19):4859–4861. doi: 10.1111/mec.14327
  • Kovalchuk I. Transgenerational epigenetic inheritance in animals. Front Genet. 2012;3. doi: 10.3389/fgene.2012.00076
  • Skinner MK. What is an Epigenetic Transgenerational Phenotype? F3 or F2. Reprod Toxicol. 2008;25(1):2–6. doi: 10.1016/j.reprotox.2007.09.001
  • Jeremias G, Gonçalves FJM, Pereira JL, et al. Prospects for incorporation of epigenetic biomarkers in human health and environmental risk assessment of chemicals. Biol Rev. 2020;95(3):822–846. doi: 10.1111/brv.12589
  • Poynton HC, Loguinov AV, Varshavsky JR, et al. Gene expression profiling in Daphnia magna part I: concentration-dependent profiles provide support for the no observed transcriptional effect level. Environ Sci Technol. 2008a;42(16):6250–6256. doi: 10.1021/es8010783
  • Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet. 2014;5:201. doi: 10.3389/fgene.2014.00201
  • Kvist J, Gonçalves Athanàsio C, Shams Solari O, et al. Pattern of DNA methylation in Daphnia: evolutionary perspective. Genome Biol Evol. 2018;10(8):1988–2007. doi: 10.1093/gbe/evy155
  • Thaulow J, Song Y, Lindeman LC, et al. Epigenetic, transcriptional and phenotypic responses in Daphnia magna exposed to low-level ionizing radiation. Environ Res. 2020;190:109930. doi: 10.1016/j.envres.2020.109930
  • ASTM, 1980. Standard practice for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians. Report E 729-80, American Society for Testing and Materials, Philadelphia.
  • Stein JR. Handbook of phycological methods-culture methods and growth measurements. Cambridge: Cambridge University Press; 1973.
  • OECD. OECD guideline for testing of chemicals 202 - Daphnia sp., acute immobilisation test. Paris: OECD Publishing; 2004.
  • Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162(1):156–159. doi: 10.1016/0003-2697(87)90021-2
  • Ozáez I, Aquilino M, Morcillo G, et al. UV filters induce transcriptional changes of different hormonal receptors in chironomus riparius embryos and larvae. Environ Pollut. 2016;214:239–247. doi: 10.1016/j.envpol.2016.04.023
  • Poynton HC, Varshavsky JR, Chang B, et al. Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol. 2007;41(3):1044–1050. doi: 10.1021/es0615573
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):45e–45. doi: 10.1093/nar/29.9.e45
  • Asselman J, Glaholt SP, Smith Z, et al. Functional characterization of four metallothionein genes in Daphnia pulex exposed to environmental stressors. Aquat Toxicol. 2012;110–111:54–65. doi: 10.1016/j.aquatox.2011.12.010
  • De Coninck DIM, Asselman J, Glaholt S, et al. Genome-wide transcription profiles reveal genotype-dependent responses of biological pathways and gene-families in daphnia exposed to single and mixed stressors. Environ Sci Technol. 2014;48:3513–3522. doi: 10.1021/es4053363
  • Vandegehuchte MB, Lemière F, Vanhaecke L, et al. Direct and transgenerational impact on daphnia magna of chemicals with a known effect on DNA methylation. Comp Biochem Physiol - C Toxicol Pharmacol. 2010b;151(3):278–285. doi: 10.1016/j.cbpc.2009.11.007
  • Barata C, Varo I, Navarro JC, et al. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran daphnia magna exposed to redox cycling compounds. Comp Biochem Physiol - C Toxicol Pharmacol. 2005;140(2):175–186. doi: 10.1016/j.cca.2005.01.013
  • Pellegri V, Gorbi G, Buschini A. DNA damage detection by comet assay on daphnia magna: application in freshwater biomonitoring. Sci Total Environ. 2020;705:135780. doi: 10.1016/j.scitotenv.2019.135780
  • Suresh S, Crease TJ, Cristescu ME, et al. Alternative splicing is highly variable among daphnia pulex lineages in response to acute copper exposure. BMC Genomics. 2020;21(1):433. doi: 10.1186/s12864-020-06831-4
  • Asselman J, Shaw JR, Glaholt SP, et al. Transcription patterns of genes encoding four metallothionein homologs in Daphnia pulex exposed to copper and cadmium are time- and homolog-dependent. Aquat Toxicol. 2013;142–143:422–430. doi: 10.1016/j.aquatox.2013.09.010
  • Sekelsky J. DNA repair in drosophila: mutagens, models, and missing genes. Genetics. 2017;205(2):471–490. doi: 10.1534/genetics.116.186759
  • Song Y, Rundberget JT, Evenseth LM, et al. Whole-organism transcriptomic analysis provides mechanistic insight into the acute toxicity of emamectin benzoate in daphnia magna. Environ Sci Technol. 2016;50(21):11994–12003. doi: 10.1021/acs.est.6b03456
  • Song Y, Xie L, Lee YK, et al. Integrative assessment of low-dose gamma radiation effects on daphnia magna reproduction: toxicity pathway assembly and AOP development. Sci Total Environ. 2020;705:135912. doi: 10.1016/j.scitotenv.2019.135912
  • Tang S, Wu Y, Ryan CN, et al. Distinct expression profiles of stress defense and DNA repair genes in Daphnia pulex exposed to cadmium, zinc, and quantum dots. Chemosphere. 2015;120:92–99. doi: 10.1016/j.chemosphere.2014.06.011
  • Decaestecker E, Labbé P, Ellegaard K, et al. Candidate innate immune system gene expression in the ecological model Daphnia. Dev Comp Immunol. 2011;35(10):1068–1077. doi: 10.1016/j.dci.2011.04.004
  • Nash N, Klymasz-Swartz AK, Nash MT, et al. Impact of heatwaves and environmental ammonia on energy metabolism, nitrogen excretion, and mRNA expression of related genes in the indicator model system daphnia magna. Aquat Toxicol. 2022;249:106225. doi: 10.1016/j.aquatox.2022.106225
  • Pilorz V, Helfrich-Förster C, Oster H. The role of the circadian clock system in physiology. Pflugers Arch Eur J Physiol. 2018;470(2):227–239. doi: 10.1007/s00424-017-2103-y
  • Tilden AR, McCoole MD, Harmon SM, et al. Genomic identification of a putative circadian system in the cladoceran crustacean daphnia pulex. Comp Biochem Physiol. 2011;6(3):282–309. doi: 10.1016/j.cbd.2011.06.002
  • Cai M, Liu Z, Yu P, et al. Circadian rhythm regulation of the oxidation–antioxidant balance in Daphnia pulex. Comp Biochem Physiol Part - B Biochem Mol Biol. 2020;240:110387. doi: 10.1016/j.cbpb.2019.110387
  • Coldsnow KD, Relyea RA, Hurley JM. Evolution to environmental contamination ablates the circadian clock of an aquatic sentinel species. Ecol Evol. 2017;7(23):10339–10349. doi: 10.1002/ece3.3490
  • Asselman J, De Coninck DI, Beert E, et al. Bisulfite sequencing with daphnia highlights a role for epigenetics in regulating stress response to microcystis through preferential differential methylation of serine and threonine amino acids. Environ Sci Technol. 2017;51(2):924–931. doi: 10.1021/acs.est.6b03870
  • Schermelleh L, Haemmer A, Spada F, et al. Dynamics of Dnmt1 interaction with the replication machinery and its role in postreplicative maintenance of DNA methylation. Nucleic Acids Res. 2007;35(13):4301–4312. doi: 10.1093/nar/gkm432
  • Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14(10):662–672. doi: 10.1038/nrc3802
  • Coucheron DH, Wojewodzic MW, Bøhn T. MicroRNAs in Daphnia magna identified and characterized by deep sequencing, genome mapping and manual curation. Sci Rep. 2019;9(1):1–15. doi: 10.1038/s41598-019-52387-z
  • Hearn J, Chow FWN, Barton H, et al. Daphnia magna microRnas respond to nutritional stress and ageing but are not transgenerational. Mol Ecol. 2018;27(6):1402–1412. doi: 10.1111/mec.14525
  • Poreba E, Lesniewicz K, Durzynska J. Histone–lysine N-methyltransferase 2 (KMT2) complexes – a new perspective. Mutat Res. 2022;790:108443. doi: 10.1016/j.mrrev.2022.108443
  • Yang X. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 2004;32(3):959–976. doi: 10.1093/nar/gkh252
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi: 10.1038/cr.2011.22
  • Lawrence M, Daujat S, Schneider R. Lateral thinking: how histone modifications regulate gene expression. Trends Genet. 2016;32(1):42–56. doi: 10.1016/j.tig.2015.10.007
  • Dai H, Wang Z. Histone modification patterns and their responses to environment. Curr Environ Heal Reports. 2014;1(1):11–21. doi: 10.1007/s40572-013-0008-2
  • Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: a promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. Mar Pollut Bull. 2015;98(1–2):5–13. doi: 10.1016/j.marpolbul.2015.06.020
  • Bossuyt BTA, Janssen CR. Influence of multigeneration acclimation to copper on tolerance, energy reserves, and homeostasis of Daphnia magna Straus. Environ Toxicol Chem. 2004;23(8):2029–2037. doi: 10.1897/03-377
  • Bossuyt BTA, Janssen CR. Acclimation of Daphnia magna to environmentally realistic copper concentrations. Comp Biochem Physiol - C Toxicol Pharmacol. 2003;136(3):253–264. doi: 10.1016/j.cca.2003.09.007
  • Engelen E, Janssens RC, Yagita K, et al. Mammalian TIMELESS is Involved in period determination and DNA damage-dependent phase advancing of the circadian clock. PLoS One. 2013;8(2):e56623. doi: 10.1371/journal.pone.0056623
  • Masri S, Kinouchi K, Sassone-Corsi P. Circadian clocks, epigenetics, and cancer. Curr Opin Oncol. 2015;27(1):50–56. doi: 10.1097/CCO.0000000000000153
  • Sahar S, Sassone-Corsi P. The epigenetic language of circadian clocks. In: Kramer A Merrow M, editors. Circadian clocks. Springer; 2013. pp. 29–44. doi: 10.1007/978-3-642-25950-0_2.
  • Leung JM, Martinez ME. Circadian rhythms in Environmental Health Sciences. Curr Environ Heal Reports. 2020;7(3):272–281. doi: 10.1007/s40572-020-00285-2