1,457
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Animal and plant protein intake during infancy and childhood DNA methylation: a meta-analysis in the NutriPROGRAM consortium

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2299045 | Received 14 Mar 2023, Accepted 19 Dec 2023, Published online: 10 Jan 2024

References

  • Michaelsen KF, Greer FR. Protein needs early in life and long-term health. Am J Clin Nutr. 2014;99(3):718s–15. doi: 10.3945/ajcn.113.072603
  • Lind MV, Larnkjær A, Mølgaard C, et al. Dietary protein intake and quality in early life: impact on growth and obesity. Curr Opin Clin Nutr Metab Care. 2017;20(1):71–6. doi: 10.1097/MCO.0000000000000338
  • Jen V, Braun KVE, Karagounis LG, et al. Longitudinal association of dietary protein intake in infancy and adiposity throughout childhood. Clin Nutr. 2019;38(3):1296–302. doi: 10.1016/j.clnu.2018.05.013
  • Braun KV, Erler NS, Kiefte-de Jong JC, et al. Dietary intake of protein in early childhood is associated with growth trajectories between 1 and 9 years of age. J Nutr. 2016;146(11):2361–7. doi: 10.3945/jn.116.237164
  • Voortman T, Braun KV, Kiefte-de Jong JC, et al. Protein intake in early childhood and body composition at the age of 6 years: the generation R study. Int J Obes (Lond). 2016;40(6):1018–1025. doi: 10.1038/ijo.2016.29
  • Voortman T, van den Hooven EH, Tielemans MJ, et al. Protein intake in early childhood and cardiometabolic health at school age: the generation R study. Eur J Nutr. 2016;55(6):2117–2127. doi: 10.1007/s00394-015-1026-7
  • Durão C, Oliveira A, Santos AC, et al. Protein intake and dietary glycemic load of 4-year-olds and association with adiposity and serum insulin at 7 years of age: sex-nutrient and nutrient-nutrient interactions. Int J Obes (Lond). 2017;41(4):533–541. doi: 10.1038/ijo.2016.240
  • Lu J, Gu Y, Liu H, et al. Daily branched-chain amino acid intake and risks of obesity and insulin resistance in children: a cross-sectional study. Obesity (Silver Spring). 2020;28(7):1310–1316. doi: 10.1002/oby.22834
  • Luque V, Closa-Monasterolo R, Escribano J, et al. Early programming by protein intake: the effect of protein on adiposity development and the growth and functionality of vital organs. Nutr Metab Insights. 2015;8(Suppl 1):49–56. doi: 10.4137/NMI.S29525
  • Lillycrop KA, Hoile SP, Grenfell L, et al. DNA methylation, ageing and the influence of early life nutrition. Proc Nutr Soc. 2014;73(3):413–421. doi: 10.1017/S0029665114000081
  • Maddock J, Wulaningsih W, Fernandez JC, et al. Associations between body size, nutrition and socioeconomic position in early life and the epigenome: a systematic review. PLoS One. 2018;13(8):e0201672. doi: 10.1371/journal.pone.0201672
  • Joubert BR, den Dekker HT, Felix JF, et al. Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns. Nat Commun. 2016;7(1):10577. doi: 10.1038/ncomms10577
  • Briollais L, Rustand D, Allard C, et al. DNA methylation mediates the association between breastfeeding and early-life growth trajectories. Clin Epigenetics. 2021;13(1):231. doi: 10.1186/s13148-021-01209-z
  • Hartwig FP, Loret de Mola C, Davies NM, et al. Breastfeeding effects on DNA methylation in the offspring: a systematic literature review. PLoS One. 2017;12(3):e0173070. doi: 10.1371/journal.pone.0173070
  • Obermann-Borst SA, Eilers PH, Tobi EW, et al. Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res. 2013;74(3):344–349. doi: 10.1038/pr.2013.95
  • Hammad SS, Jones PJ. Dietary fatty acid composition modulates obesity and interacts with obesity-related genes. Lipids. 2017;52(10):803–22. doi: 10.1007/s11745-017-4291-9
  • Voisin S, Almén MS, Moschonis G, et al. Dietary fat quality impacts genome-wide DNA methylation patterns in a cross-sectional study of Greek preadolescents. Eur J Hum Genet. 2015;23(5):654–62. doi: 10.1038/ejhg.2014.139
  • Perfilyev A, Dahlman I, Gillberg L, et al. Impact of polyunsaturated and saturated fat overfeeding on the DNA-methylation pattern in human adipose tissue: a randomized controlled trial. Am J Clin Nutr. 2017;105(4):991–1000. doi: 10.3945/ajcn.116.143164
  • Waterland RA. Assessing the effects of high methionine intake on DNA methylation. J Nutr. 2006;136(6):1706S–10S. doi: 10.1093/jn/136.6.1706S
  • Zheng J, Zhang L, Liu J, et al. Long-term effects of maternal low-protein diet and post-weaning high-fat feeding on glucose metabolism and hypothalamic POMC promoter methylation in offspring mice. Front Nutr. 2021;8:657848. doi: 10.3389/fnut.2021.657848
  • Altmann S, Murani E, Schwerin M, et al. Dietary protein restriction and excess of pregnant German Landrace sows induce changes in hepatic gene expression and promoter methylation of key metabolic genes in the offspring. J Nutr Biochem. 2013;24(2):484–95. doi: 10.1016/j.jnutbio.2012.01.011
  • Altobelli G, Bogdarina IG, Stupka E, et al. Genome-wide methylation and gene expression changes in newborn rats following maternal protein restriction and reversal by folic acid. PLoS One. 2014;8(12):e82989. doi: 10.1371/journal.pone.0082989
  • Zaghlool SB, Kühnel B, Elhadad MA, et al. Epigenetics meets proteomics in an epigenome-wide association study with circulating blood plasma protein traits. Nat Commun. 2020;11(1):15. doi: 10.1038/s41467-019-13831-w
  • Ahsan M, Ek WE, Rask-Andersen M, et al. The relative contribution of DNA methylation and genetic variants on protein biomarkers for human diseases. PLoS Genet. 2017;13(9):e1007005. doi: 10.1371/journal.pgen.1007005
  • Koletzko B, von Kries R, Closa R, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. Am J Clin Nutr. 2009;89(6):1836–45. doi: 10.3945/ajcn.2008.27091
  • Kooijman MN, Kruithof CJ, van Duijn CM, et al. The generation R study: design and cohort update 2017. Eur J Epidemiol. 2016;31(12):1243–1264. doi: 10.1007/s10654-016-0224-9
  • Theurich MA, Zaragoza-Jordana M, Luque V, et al. Commercial complementary food use amongst European infants and children: results from the EU childhood obesity project. Eur J Nutr. 2020;59(4):1679–1692. doi: 10.1007/s00394-019-02023-3
  • Schiess S, Grote V, Scaglioni S, et al. Introduction of complementary feeding in 5 European countries. J Pediatr Gastroenterol Nutr. 2010;50(1):92–8. doi: 10.1097/MPG.0b013e31819f1ddc
  • Kiefte-de Jong JC, de Vries JH, Bleeker SE, et al. Socio-demographic and lifestyle determinants of ‘Western-like’ and ‘health conscious’ dietary patterns in toddlers. British Journal Of Nutrition. 2013;109(1):137–147. doi: 10.1017/S0007114512000682
  • Lehne B, Drong AW, Loh M, et al. A coherent approach for analysis of the Illumina HumanMethylation450 BeadChip improves data quality and performance in epigenome-wide association studies. Genome Biol. 2015;16(1):37. doi: 10.1186/s13059-015-0600-x
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012;13(1):86. doi: 10.1186/1471-2105-13-86
  • Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive bioconductor package for the analysis of infinium DNA methylation microarrays. Bioinformatics. 2014;30(10):1363–9. doi: 10.1093/bioinformatics/btu049
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022. https://www.R-project.org/
  • Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation in purified human blood cells: implications for cell lineage and studies on disease susceptibility. PLoS One. 2012;7(7):e41361. doi: 10.1371/journal.pone.0041361
  • Venables WNR, D B. Modern applied statistics with S. Fourth ed. New York: Springer; 2002.
  • Van der Most PJ, Küpers LK, Snieder H, et al. QCEWAS: automated quality control of results of epigenome-wide association studies. Bioinformatics. 2017;33(8):1243–1245. doi: 10.1093/bioinformatics/btw766
  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190–1. doi: 10.1093/bioinformatics/btq340
  • Naeem H, Wong NC, Chatterton Z, et al. Reducing the risk of false discovery enabling identification of biologically significant genome-wide methylation status using the HumanMethylation450 array. BMC Genomics. 2014;15(1):51. doi: 10.1186/1471-2164-15-51
  • Chen YA, Lemire M, Choufani S, et al. Discovery of cross-reactive probes and polymorphic CpGs in the illumina infinium HumanMethylation450 microarray. Epigenetics. 2013;8(2):203–9. doi: 10.4161/epi.23470
  • Min JL, Hemani G, Hannon E, et al. Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation. Nat Genet. 2021;53(9):1311–21. doi: 10.1038/s41588-021-00923-x
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soc Ser B (Methodological). 1995;57(1):289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x
  • Battram T, Yousefi P, Crawford G, et al. The EWAS catalog: a database of epigenome-wide association studies. Wellcome Open Res. 2022;7:41. doi: 10.12688/wellcomeopenres.17598.2
  • Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, et al. Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children’s blood. Elife. 2022;11:11. doi: 10.7554/eLife.65310
  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–8. doi: 10.1093/bioinformatics/btv560
  • Nones K, Waddell N, Song S, et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int J Cancer. 2014;135(5):1110–8. doi: 10.1002/ijc.28765
  • Wozniak MB, Le Calvez-Kelm F, Abedi-Ardekani B, et al. Integrative genome-wide gene expression profiling of clear cell renal cell carcinoma in Czech Republic and in the United States. PLoS One. 2013;8(3):e57886. doi: 10.1371/journal.pone.0057886
  • Ruiz-Arenas C, Hernandez-Ferrer C, Vives-Usano M, et al. Identification of autosomal cis expression quantitative trait methylation (cis eQTMs) in children’s blood. Elife. 2022;11:e65310. doi: 10.7554/eLife.65310
  • Bhagwandin C, Ashbeck EL, Whalen M, et al. The E3 ubiquitin ligase MARCH1 regulates glucose-tolerance and lipid storage in a sex-specific manner. PLoS One. 2018;13(10):e0204898. doi: 10.1371/journal.pone.0204898
  • Yang X-D, Xiang D-X, Yang Y-Y. Role of E3 ubiquitin ligases in insulin resistance. Diabetes Obesity Metab. 2016;18(8):747–54. doi: 10.1111/dom.12677
  • Chen Y, Kassam I, Lau SH, et al. Impact of BMI and waist circumference on epigenome-wide DNA methylation and identification of epigenetic biomarkers in blood: an EWAS in multi-ethnic Asian individuals. Clin Epigenetics. 2021;13(1):195. doi: 10.1186/s13148-021-01162-x
  • Lee M, Kwon DY, Kim MS, et al. Genome-wide association study for the interaction between BMR and BMI in obese Korean women including overweight. Nutr Res Pract. 2016;10(1):115–24. doi: 10.4162/nrp.2016.10.1.115
  • Tachmazidou I, Süveges D, Min JL, et al. Whole-genome sequencing coupled to imputation discovers genetic signals for anthropometric traits. Am J Hum Genet. 2017;100(6):865–84. doi: 10.1016/j.ajhg.2017.04.014
  • Bonder MJ, Kasela S, Kals M, et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC Genomics. 2014;15(1):860. doi: 10.1186/1471-2164-15-860
  • Horvath S, Erhart W, Brosch M, et al. Obesity accelerates epigenetic aging of human liver. Proc Nat Acad Sci. 2014;111(43):15538–15543. doi: 10.1073/pnas.1412759111
  • Sjöstedt E, Zhong W, Fagerberg L, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367(6482):367(6482. doi: 10.1126/science.aay5947
  • Sun J, Zhang X, Sun Y. C1orf109 promotes malignant phenotype of liver cancer via wnt signaling pathway in a CK2-dependent manner. J Mol Histol. 2023;54(2):135–45. doi: 10.1007/s10735-023-10117-w
  • Stelzer G, Rosen N, Plaschkes I, et al. The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):.1.30.1–.1.3. doi: 10.1002/cpbi.5
  • Buniello A, MacArthur JAL, Cerezo M, et al. The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019;47(D1):D1005–D12. doi: 10.1093/nar/gky1120
  • Totzauer M, Escribano J, Closa-Monasterolo R, et al. Different protein intake in the first year and its effects on adiposity rebound and obesity throughout childhood: 11 years follow-up of a randomized controlled trial. Pediatr Obes. 2022;17(12):e12961. doi: 10.1111/ijpo.12961
  • Miousse IR, Pathak R, Garg S, et al. Short-term dietary methionine supplementation affects one-carbon metabolism and DNA methylation in the mouse gut and leads to altered microbiome profiles, barrier function, gene expression and histomorphology. Genes & Nutrition. 2017;12(1):22. doi: 10.1186/s12263-017-0576-0
  • Koletzko B, Demmelmair H, Grote V, et al. High protein intake in young children and increased weight gain and obesity risk1. Am J Clin Nutr. 2016;103(2):303–4. doi: 10.3945/ajcn.115.128009
  • Breton CV, Landon R, Kahn LG, et al. Exploring the evidence for epigenetic regulation of environmental influences on child health across generations. Commun Biol. 2021;4(1):769. doi: 10.1038/s42003-021-02316-6
  • Nuru M, Muradashvili N, Kalani A, et al. High methionine, low folate and low vitamin B6/B12 (HM-LF-LV) diet causes neurodegeneration and subsequent short-term memory loss. Metab Brain Dis. 2018;33(6):1923–34. doi: 10.1007/s11011-018-0298-z
  • Zhang N. Role of methionine on epigenetic modification of DNA methylation and gene expression in animals. Anim Nutr. 2018;4(1):11–16. doi: 10.1016/j.aninu.2017.08.009
  • Assmann KE, Joslowski G, Buyken AE, et al. Prospective association of protein intake during puberty with body composition in young adulthood. Obesity. 2013;21(12):E782–E9. doi: 10.1002/oby.20516
  • Damianidi L, Gruszfeld D, Verduci E, et al. Protein intakes and their nutritional sources during the first 2 years of life: secondary data evaluation from the European childhood obesity project. Eur J Clin Nutr. 2016;70(11):1291–7. doi: 10.1038/ejcn.2016.108
  • Willett WC, Howe GR, Kushi LH. Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr. 1997;65(4 Suppl):1220S–1228S. discussion 9S-31S. doi: 10.1093/ajcn/65.4.1220S
  • Joubert BR, Felix JF, Yousefi P, et al. DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680–96. doi: 10.1016/j.ajhg.2016.02.019