634
Views
0
CrossRef citations to date
0
Altmetric
Research Article

DNA methylation variation and growth in the clonal Duchesnea indica is regulated by both past and present lead environments

, , , &
Article: 2305078 | Received 16 Oct 2023, Accepted 09 Jan 2024, Published online: 21 Jan 2024

References

  • Oborny B. Growth rules in clonal plants and environmental predictability -- a simulation study. J Ecol. 1994;82(2):341–13. doi: 10.2307/2261302
  • Hutchings MJ, John EA. The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann Bot. 2004;94(1):1–8. doi: 10.1093/aob/mch111
  • Oborny B, Hubai AG. Patch size and distance: modelling habitat structure from the perspective of clonal growth. Ann Bot. 2014;114(2):389–398. doi: 10.1093/aob/mcu110
  • Waters EM, Watson MA. Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front Plant Sci. 2015;6:1–10. doi: 10.3389/fpls.2015.00814
  • Latzel V, Klimešová J. Transgenerational plasticity in clonal plants. Evol Ecol. 2010;24(6):1537–1543. doi: 10.1007/s10682-010-9385-2
  • Dong BC, Meng J, Yu FH, et al. Effects of parental light environment on growth and morphological responses of clonal offspring. Plant Biol J. 2019;21(6):1083–1089. doi: 10.1111/plb.13001
  • Guo YH, Quan JX, Wang XB, et al. Predictability of parental ultraviolet-B environment shapes the growth strategies of clonal Glechoma longituba. Front Plant Sci. 2022;13:949752. doi: 10.3389/fpls.2022.949752
  • Latzel V, González APR, Rosenthal J. Epigenetic memory as a basis for intelligent behavior in clonal plants. Front Plant Sci. 2016;7:1354. doi: 10.3389/fpls.2016.01354
  • Louâpre P, Bittebière AK, Clément B, et al. How past and present influence the foraging of clonal plants? PloS One. 2012;7(6):e38288. doi: 10.1371/journal.pone.0038288
  • Latzel V, Münzbergová Z. Anticipatory behavior of the clonal plant Fragaria vesca. Front In Plant Sci. 2018;9:1847. doi: 10.3389/fpls.2018.01847
  • Münzbergová Z, Hadincová V. Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol Evol. 2017;7(14):5236–5247. doi: 10.1002/ece3.3105
  • Quan JX, Münzbergová Z, Latzel V. Time dynamics of stress legacy in clonal transgenerational effects: a case study on Trifolium repens. Ecol Evol. 2022;12(5):e8959. doi: 10.1002/ece3.8959
  • Li P, Yang H, Wang L, et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front Genet. 2019;10:55. doi: 10.3389/fgene.2019.00055
  • Walter J, Jentsch A, Beierkuhnlein C, et al. Ecological stress memory and cross stress tolerance in plants in the face of climate extremes. Environ Exp Bot. 2013;94:3–8. doi: 10.1016/j.envexpbot.2012.02.009
  • Verhoeven KJF, Jansen JJ, Van Dijk PJ, et al. Stress induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 2010;185(4):1108–1118. doi: 10.1111/j.1469-8137.2009.03121.x
  • Angers B, Castonguay E, Massicotte R. Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol. 2010;19(7):1283–1295. doi: 10.1111/j.1365-294X.2010.04580.x
  • Zhang YY, Fischer M, Colot V, et al. Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol. 2013;197(1):314–322. doi: 10.1111/nph.12010
  • Mirouze M, Paszkowski J. Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol. 2011;14(3):267. doi: 10.1016/j.pbi.2011.03.004
  • Pigliucci M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol Evol. 2005;20(9):481–486. doi: 10.1016/j.tree.2005.06.001
  • van Kleunen M, Fischer M. Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 2005;166(1):49–60. doi: 10.1111/j.1469-8137.2004.01296.x
  • González APR, Chrtek J, Dobrev PI, et al. Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens). Am J Bot. 2016;103(9):1–8. doi: 10.3732/ajb.1500526
  • Verhoeven KJF, Preite V. Epigenetic variation in asexually reproducing organisms. Evolution. 2014;68(3):644–655. doi: 10.1111/evo.12320
  • Douhovnikoff V, Dodd RS. Epigenetics: a potential mechanism for clonal plant success. Plant Ecol. 2015;216(2):227–233. doi: 10.1007/s11258-014-0430-z
  • González APR, Dumalasová V, Rosenthal J, et al. The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol Ecol. 2017;31(3):345–361. doi: 10.1007/s10682-016-9844-5
  • Ren WB, Hu NN, Hou XY, et al. Long-term overgrazing-induced memory decreases photosynthesis of clonal offspring in a perennial grassland plant. Front Plant Sci. 2017;8:419. doi: 10.3389/fpls.2017.00419
  • Chinnusamy V, Zhu JK. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol. 2009;12(2):133–139. doi: 10.1016/j.pbi.2008.12.006
  • Kinoshita T, Seki M. Epigenetic Memory for stress response and adaptation in plants. Plant Cell Physiol. 2014;55(11):1859–1863. doi: 10.1093/pcp/pcu125
  • Laanen P, Saenen E, Mysara M, et al. Changes in DNA methylation in Arabidopsis thaliana plants exposed over multiple generations to gamma radiation. Front Plant Sci. 2021;12:611783. doi: 10.3389/fpls.2021.611783
  • Hu PJ, Li Z, Zhong DX, et al. Research progress on the phytoextraction of heavy metal contaminated soils in China. Plant Physiol J. 2014;50:577–584. in Chinese with English abstract.
  • Duan DC, Yu MG, Shi JY. Research advances in uptake, translocation, accumulation and detoxification of Pb in plants. Chin J Of Appl Ecol. 2014;25:287–296. in Chinese with English abstract.
  • Quan JX, Zhang XY, Song SS, et al. Clonal plant Duchesnea indica focke forms an effective survival strategy in different degrees of Pb-contaminated environments. Plant Ecol. 2018;219(11):1315–1327. doi: 10.1007/s11258-018-0881-8
  • Xie XF, Song YB, Zhang YL, et al. Phylogenetic meta-analysis of the functional traits of clonal plants foraging in changing environments. PloS One. 2014;9(9):e107114. doi: 10.1371/journal.pone.0107114
  • Quan JX, Latzel V, Tie D, et al. Ultraviolet B radiation triggers DNA methylation change and affects foraging behavior of the clonal plant Glechoma longituba. Front Plant Sci. 2021;12:633982. doi: 10.3389/fpls.2021.633982
  • Pérez Figueroa A. MSAP: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol Ecol Resour. 2013;13(3):522–527. doi: 10.1111/1755-0998.12064
  • Salmon A, Clotault J, Jenczewski E, et al. Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 2008;174(1):61–70. doi: 10.1016/j.plantsci.2007.09.012
  • Wang MZ, Li HL, Li JM, et al. Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity. 2019;124(1):146–155. doi: 10.1038/s41437-019-0261-8
  • Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14(6):927–930. doi: 10.1111/j.1654-1103.2003.tb02228.x
  • Liu S, Sun K, Jiang T, et al. Natural epigenetic variation in the female great roundleaf bat (Hipposideros armiger) populations. Mol Genet Genomics. 2012;287(8):643–650. doi: 10.1007/s00438-012-0704-x
  • Bonin A, Ehrich D, Manel S. Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol. 2007;16(18):3737–3758. doi: 10.1111/j.1365-294X.2007.03435.x
  • Hutchings MJ, Wijesinghe DK. Performance of a clonal species in patchy environments: effects of environmental context on yield at local and whole-plant scales. Evol Ecol. 2008;22(3):313–324. doi: 10.1007/s10682-007-9178-4
  • Xiao KY, Yu D, Wang JW. Habitat selection in spatially heterogeneous environments: a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis. Freshwater Biol. 2006;51(8):1552–1559. doi: 10.1111/j.1365-2427.2006.01590.x
  • Tie D, Guo YH, Zhu CR, et al. Parental UV-B radiation regulates the habitat selection of clonal Duchesnea indica in heterogeneous light environments. Funct Plant Biol. 2022;49(7):600–612. doi: 10.1071/FP21253
  • Pourrut B, Shahid M, Dumat C, et al. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam T. 2011;213:113–136.
  • Shahid M, Pinelli E, Pourrut B, et al. Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotox Environ Safe. 2011;74(1):78–84. doi: 10.1016/j.ecoenv.2010.08.037
  • Koivunen S, Saikkonen K, Vuorisalo T, et al. Heavy metals modify costs of reproduction and clonal growth in the stoloniferous herb Potentilla anserina. Evol Ecol. 2004;18(5–6):541–561. doi: 10.1007/s10682-004-5143-7
  • Dong M, de Kroon H. Plasticity in morphology and biomass allocation in Cynodon dactylon, a grass species forming stolons and rhizomes. Oikos. 1994;70(1):99–106. doi: 10.2307/3545704
  • Kleijn D, van Groenendael JM. The exploitation of heterogeneity by a clonal plant in habitats with contrasting productivity levels. J Ecol. 1999;87(5):873–884. doi: 10.1046/j.1365-2745.1999.00406.x
  • Price EAC, Marshall C, Hutchings MJ. Studies of growth in the clonal herb Glechoma hederacea. I. Patterns of physiological integration J Ecol. 1992;80(1):25–38. doi: 10.2307/2261060
  • Waterman R, Sultan SE. Transgenerational effects of parent plant competition on offspring development in contrasting conditions. Ecology. 2021;102(12):e03531. doi: 10.1002/ecy.3531
  • Hutchings MJ, Wijesinghe DK. Patchy habitats, division of labour and growth dividends in clonal plants. Trends Ecol Evol. 1997;12(10):390–394. doi: 10.1016/S0169-5347(97)87382-X
  • Wang N, Yu FH, Li PX, et al. Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Ann Bot. 2008;101(5):671–678. doi: 10.1093/aob/mcn005
  • Roiloa SR, Retuerto R. Clonal integration in Fragaria vesca growing in metal-polluted soils: parents face penalties for establishing their offspring in unsuitable environments. Ecol Res. 2012;27(1):95–106. doi: 10.1007/s11284-011-0876-6
  • Auge GA, Leverett LD, Edwards BR, et al. Adjusting phenotypes via within- and across-generational plasticity. New Phytol. 2017;216(2):343–349. doi: 10.1111/nph.14495
  • Uller T. Developmental plasticity and the evolution of parental effects. Trends Ecol Evol. 2008;23(8):432–8. doi: 10.1016/j.tree.2008.04.005
  • Dong BC, van Kleunen M, Yu FH. Context-dependent parental effects on clonal offspring performance. Front Plant Sci. 2018;9:1824. doi: 10.3389/fpls.2018.01824
  • Galloway LF, Etterson JR. Transgenerational plasticity is adaptive in the wild. Science. 2007;318(5853):1134–1136. doi: 10.1126/science.1148766
  • Latzel V, Janecek Š, Doležal J, et al. Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos. 2014;123(1):41–46. doi: 10.1111/j.1600-0706.2013.00537.x
  • Wibowo A, Becker C, Marconi G, et al. Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5. 2016;5:e13546. doi: 10.7554/eLife.13546
  • Verhoeven KJF, van Gurp TP. Transgenerational effects of stress exposure on offspring phenotypes in Apomictic dandelion. PLoS One. 2012;7(6):e38605. doi: 10.1371/journal.pone.0038605
  • Ding Y, Virlouvet L, Liu N, et al. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 2014;14(1):141. doi: 10.1186/1471-2229-14-141
  • Virlouvet L, Avenson TJ, Du Q, et al. Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Front Plant Sci. 2018;9:1058. doi: 10.3389/fpls.2018.01058
  • Lira-Medeiros CF, Cardoso MA, Fernandes RA, et al. Analysis of genetic diversity of two mangrove species with morphological alterations in a natural environment. Diversity. 2015;7(2):105–117. doi: 10.3390/d7020105