1,800
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Resistance and aerobic training increases genome-wide DNA methylation in women with polycystic ovary syndrome

ORCID Icon, , ORCID Icon, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2305082 | Received 21 Jul 2023, Accepted 09 Jan 2024, Published online: 21 Jan 2024

References

  • Belenkaia LV, Lazareva LM, Walker W, et al. Criteria, phenotypes and prevalence of polycystic ovary syndrome. Minerva Ginecol. 2019;71(3):211–19. doi: 10.23736/S0026-4784.19.04404-6
  • Azziz R, Carmina E, Chen Z, et al. Polycystic ovary syndrome. Nat Rev Dis Primers. 2016;2(1):16057. doi: 10.1038/nrdp.2016.57
  • Teede H, Deeks A, Moran L. Polycystic ovary syndrome: a complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8(1):41. doi: 10.1186/1741-7015-8-41
  • Azziz R, Carmina E, Dewailly D, et al. The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril. 2009;91(2):456–488. doi: 10.1016/j.fertnstert.2008.06.035
  • Moran LJ, Deeks AA, Gibson-Helm ME, et al. Psychological parameters in the reproductive phenotypes of polycystic ovary syndrome. Hum Reprod. 2012;27(7):2082–8. doi: 10.1093/humrep/des114
  • Barber TM, McCarthy MI, Wass JA, et al. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65(2):137–45. doi: 10.1111/j.1365-2265.2006.02587.x
  • Fichman V, Costa R, Miglioli TC, et al. Association of obesity and anovulatory infertility. Einstein (Sao Paulo). 2020;18:eAO5150. doi: 10.31744/einstein_journal/2020AO5150
  • Teede HJ, Tay CT, Laven J, et al. Recommendations from the 2023 International Evidence-based Guideline for the assessment and management of polycystic ovary syndrome. Fertil Steril. 2023;120(4):767–93. doi: 10.1016/j.fertnstert.2023.07.025
  • Butt MS, Saleem J, Zakar R, et al. Benefits of physical activity on reproductive health functions among polycystic ovarian syndrome women: a systematic review. BMC Public Health. 2023;23(1):882. doi: 10.1186/s12889-023-15730-8
  • Kogure GS, Miranda-Furtado CL, Silva RC, et al. Resistance exercise impacts lean muscle mass in women with polycystic ovary syndrome. Med Sci Sports Exerc. 2016;48(4):589–598. doi: 10.1249/MSS.0000000000000822
  • Ribeiro VB, Kogure GS, Lopes IP, et al. Effects of continuous and intermittent aerobic physical training on hormonal and metabolic profile, and body composition in women with polycystic ovary syndrome: a randomized controlled trial. Clin Endocrinol (Oxf). 2020;93(2):173–186. doi: 10.1111/cen.14194
  • Kogure GS, Lara L, Ribeiro VB, et al. Distinct protocols of physical exercise may improve different aspects of well-being in women with polycystic ovary syndrome. Am J Lifestyle Med. 2023;17(1):140–151. doi: 10.1177/15598276211001330
  • Grazioli E, Dimauro I, Mercatelli N, et al. Physical activity in the prevention of human diseases: role of epigenetic modifications. BMC Genomics. 2017;18(S8):802. doi: 10.1186/s12864-017-4193-5
  • Kim JK, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci. 2009;66(4):596–612. doi: 10.1007/s00018-008-8432-4
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532):1089–93. doi: 10.1126/science.1063443
  • Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol. 2015;16(10):593–610. doi: 10.1038/nrm4048
  • Hu H, Li B, Duan S. The alteration of subtelomeric DNA methylation in aging-related diseases. Front Genet. 2018;9:697. doi: 10.3389/fgene.2018.00697
  • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat Rev Genet. 2001;2(1):21–32. doi: 10.1038/35047554
  • Cotton AM, Price EM, Jones MJ, et al. Landscape of DNA methylation on the X chromosome reflects CpG density, functional chromatin state and X-chromosome inactivation. Hum Mol Genet. 2015;24(6):1528–39. doi: 10.1093/hmg/ddu564
  • Buiting K. Prader–Willi syndrome and Angelman syndrome. Am J Med Genet C Semin Med Genet. 2010;154C(3):365–376. doi: 10.1002/ajmg.c.30273
  • Martinez-Iglesias O, Carrera I, Carril JC, et al. DNA methylation in neurodegenerative and cerebrovascular disorders. Int J Mol Sci. 2020;21(6):21. doi: 10.3390/ijms21062220
  • Locke WJ, Guanzon D, Ma C, et al. DNA methylation cancer biomarkers: translation to the clinic. Front Genet. 2019;10:1150. doi: 10.3389/fgene.2019.01150
  • Samblas M, Milagro FI, Martinez A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics. 2019;14(5):421–44. doi: 10.1080/15592294.2019.1595297
  • Eiras MC, Pinheiro DP, Romcy KAM, et al. Polycystic ovary syndrome: the epigenetics behind the disease. Reprod Sci. 2022;29(3):680–694. doi: 10.1007/s43032-021-00516-3
  • Sagvekar P, Kumar P, Mangoli V, et al. DNA methylome profiling of granulosa cells reveals altered methylation in genes regulating vital ovarian functions in polycystic ovary syndrome. Clin Epigenetics. 2019;11(1):61. doi: 10.1186/s13148-019-0657-6
  • Miranda-Furtado CL, Ramos FK, Kogure GS, et al. A nonrandomized trial of progressive resistance training intervention in women with polycystic ovary syndrome and its implications in telomere content. Reprod Sci. 2016;23(5):644–654. doi: 10.1177/1933719115611753
  • Ribeiro VB, Pedroso DCC, Kogure GS, et al. Short-term aerobic exercise did not change telomere length while it reduced testosterone levels and obesity indexes in PCOS: a randomized controlled clinical trial study. Int J Environ Res Public Health. 2021 18(21):11274. doi: 10.3390/ijerph182111274
  • Rotterdam EA-SPCWG. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004; 81:19–25. doi: 10.1016/j.fertnstert.2003.10.004
  • Teede HJ, Legro RS, Norman RJ. A vision for improving the assessment and management of PCOS through international collaboration. Semin Reprod Med. 2018;36:3–4. doi: 10.1055/s-0038-1667158
  • Teede HJ, Misso ML, Costello MF, et al. International PN. Erratum. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2019;34:388. doi: 10.1093/humrep/dey363
  • American College of Sports M. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc. 2009;41(3):687–708. doi: 10.1249/MSS.0b013e3181915670
  • Fleck SJ, Kraemer WJ. Fundamentos do Treinamento de Forca Muscular. Porto Alegre: Artmed; 2006.
  • Rhea MR, Ball SD, Phillips WT, et al. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. J Strength Cond Res. 2002;16(2):250–5. doi: 10.1519/00124278-200205000-00013
  • Kinanthropometry ISftAo. Adelaide, Australia: University of South Australia. 2001.
  • Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–419. doi: 10.1007/BF00280883
  • Fortin JP, Triche TJ Jr., Hansen KD, et al. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics. 2017;33(4):558–60. doi: 10.1093/bioinformatics/btw691
  • Nix DA, Courdy SJ, Boucher KM. Empirical methods for controlling false positives and estimating confidence in ChIP-seq peaks. BMC Bioinf. 2008;9(1):523. doi: 10.1186/1471-2105-9-523
  • McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28(5):495–501. doi: 10.1038/nbt.1630
  • Mi H, Muruganujan A, Casagrande JT, et al. Large-scale gene function analysis with the PANTHER classification system. Nat Protoc. 2013;8(8):1551–66. doi: 10.1038/nprot.2013.092
  • Szklarczyk D, Morris JH, Cook H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45(D1):D362–D368. doi: 10.1093/nar/gkw937
  • Horvath S. Erratum to: DNA methylation age of human tissues and cell types. Genome Biol. 2015;16:96. doi: 10.1186/s13059-015-0649-6
  • Sillanpaa E, Ollikainen M, Kaprio J, et al. Leisure-time physical activity and DNA methylation age—a twin study. Clin Epigenetics. 2019;11(1):12. doi: 10.1186/s13148-019-0613-5
  • Kogure GS, Silva RC, Miranda-Furtado CL, et al. Hyperandrogenism enhances muscle strength after progressive resistance training, independent of body composition, in women with polycystic ovary syndrome. J Strength Cond Res. 2018;32(9):2642–51. doi: 10.1519/JSC.0000000000002714
  • Lua ACY, How CH, King TFJ. Managing polycystic ovary syndrome in primary care. Singapore Med J. 2018;59:567–71. doi: 10.11622/smedj.2018135
  • Moran LJ, Hutchison SK, Norman RJ, et al. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011:CD007506. doi: 10.1002/14651858.CD007506.pub4
  • Pasquali R, Oriolo C. Obesity and Androgens in Women. Front Horm Res. 2019;53:120–134. doi: 10.1159/000494908
  • Palomba S, Giallauria F, Falbo A, et al. Structured exercise training programme versus hypocaloric hyperproteic diet in obese polycystic ovary syndrome patients with anovulatory infertility: a 24-week pilot study. Hum Reprod. 2008;23(3):642–50. doi: 10.1093/humrep/dem391
  • Franczyk B, Gluba-Brzozka A, Cialkowska-Rysz A, et al. The impact of aerobic exercise on HDL quantity and quality: a narrative review. Int J Mol Sci. 2023;24(5):24. doi: 10.3390/ijms24054653
  • Cho KH. The Current status of research on high-density lipoproteins (HDL): a paradigm shift from HDL quantity to HDL quality and HDL functionality. Int J Mol Sci. 2022;23(7):23. doi: 10.3390/ijms23073967
  • Varbo A, Nordestgaard BG. Commentary: triglycerides or HDL cholesterol in cardiovascular disease—which is the true culprit? Int J Epidemiol. 2019;48(5):1407–1408. doi: 10.1093/ije/dyy292
  • Barron-Cabrera E, Ramos-Lopez O, Gonzalez-Becerra K, et al. Epigenetic modifications as outcomes of exercise interventions related to specific metabolic alterations: a systematic review. Lifestyle Genom. 2019;12(1–6):25–44. doi: 10.1159/000503289
  • Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37(11):1012–27. doi: 10.1016/j.tig.2021.05.002
  • Jacques M, Hiam D, Craig J, et al. Epigenetic changes in healthy human skeletal muscle following exercise– a systematic review. Epigenetics. 2019;14(7):633–648. doi: 10.1080/15592294.2019.1614416
  • Visone R, Bacalini MG, Di Franco S, et al. DNA methylation of shelf, shore and open sea CpG positions distinguish high microsatellite instability from low or stable microsatellite status colon cancer stem cells. Epigenomics. 2019;11(6):587–604. doi: 10.2217/epi-2018-0153
  • Yong WS, Hsu FM, Chen PY. Profiling genome-wide DNA methylation. Epigenet Chromatin. 2016;9(1):26. doi: 10.1186/s13072-016-0075-3
  • Zhou D, Robertson KD. Role of DNA Methylation in Genome Stability. In: Kovalchuk I, Kovalchuk O, editors. Genome Stability From Virus to Human Application. 1st ed. Academic Press; 2016. p. 409–424. doi: 10.1016/B978-0-12-803309-8.00024-0
  • Moran LJ, Noakes M, Clifton PM, et al. Genome instability is increased in lymphocytes of women with polycystic ovary syndrome and is correlated with insulin resistance. Mutat Res. 2008;639(1–2):55–63. doi: 10.1016/j.mrfmmm.2007.11.007
  • An C, Pipia I, Ruiz AS, et al. The molecular link between obesity and genomic instability in cancer development. Cancer Lett. 2023;555:216035. doi: 10.1016/j.canlet.2022.216035
  • Sellami M, Bragazzi N, Prince MS, et al. Regular, intense exercise training as a healthy aging lifestyle strategy: preventing DNA damage, telomere shortening and adverse DNA methylation changes over a lifetime. Front Genet. 2021;12:652497. doi: 10.3389/fgene.2021.652497
  • Fiorito G, Caini S, Palli D, et al. DNA methylation-based biomarkers of aging were slowed down in a two-year diet and physical activity intervention trial: the DAMA study. Aging Cell. 2021;20(10):e13439. doi: 10.1111/acel.13439
  • Eiras MC, Pinheiro DP, Romcy KAM, et al. Polycystic ovary syndrome: the epigenetics behind the disease. Reprod Sci. 2022;29(3):680–94. doi: 10.1007/s43032-021-00516-3
  • Khan MJ, Ullah A, Basit S. Genetic basis of polycystic ovary syndrome (PCOS): Current perspectives. Appl Clin Genet. 2019;12:249–60. doi: 10.2147/TACG.S200341
  • Zhang M, Li Y, Wang H, et al. LncRNA SNHG5 affects cell proliferation, metastasis and migration of colorectal cancer through regulating miR-132-3p/CREB5. Cancer Biol Ther. 2019;20(4):524–36. doi: 10.1080/15384047.2018.1537579
  • He X, Ou C, Xiao Y, et al. LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget. 2017;8(41):71325–41. doi: 10.18632/oncotarget.19921
  • Mohamadi M, Ghaedi H, Kazerouni F, et al. Deregulation of long noncoding RNA SNHG17 and TTC28-AS1 is associated with type 2 diabetes mellitus. Scand J Clin Lab Invest. 2019;79(7):519–23. doi: 10.1080/00365513.2019.1664760
  • Dierssen M, Fructuoso M, Martinez de Lagran M, et al. Down syndrome is a metabolic disease: altered insulin signaling mediates peripheral and brain dysfunctions. Front Neurosci. 2020;14:670. doi: 10.3389/fnins.2020.00670
  • Li M, Lin C, Cai Z. Downregulation of the long noncoding RNA DSCR9 (down syndrome critical region 9) delays breast cancer progression by modulating microRNA-504-5p-dependent G protein-coupled receptor 65. Hum Cell. 2023;36(4):1516–1534. doi: 10.1007/s13577-023-00916-4
  • Barres R, Yan J, Egan B, et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 2012;15(3):405–11. doi: 10.1016/j.cmet.2012.01.001
  • Zhang FF, Cardarelli R, Carroll J, et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293–9. doi: 10.4161/epi.6.3.14378
  • Ngwa JS, Nwulia E, Ntekim O, et al. Aerobic exercise training-induced changes on DNA methylation in mild cognitively impaired elderly African Americans: gene, exercise, and memory study - GEMS-I. Front Mol Neurosci. 2021;14:752403. doi: 10.3389/fnmol.2021.752403
  • Tryfidou DV, McClean C, Nikolaidis MG, et al. Correction to: DNA damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med. 2020;50(1):129–32. doi: 10.1007/s40279-019-01197-4
  • Tryfidou DV, McClean C, Nikolaidis MG, et al. DNA damage following acute aerobic exercise: a systematic review and meta-analysis. Sports Med. 2020;50(1):103–27. doi: 10.1007/s40279-019-01181-y
  • Lindholm ME, Marabita F, Gomez-Cabrero D, et al. An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. Epigenetics. 2014;9(12):1557–69. doi: 10.4161/15592294.2014.982445
  • Bagley JR, Burghardt KJ, McManus R, et al. Epigenetic Responses to Acute Resistance Exercise in Trained vs Sedentary Men. J Strength Cond Res. 2020;34(6):1574–1580. doi: 10.1519/JSC.0000000000003185
  • Seaborne RA, Strauss J, Cocks M, et al. Human skeletal muscle possesses an Epigenetic memory of hypertrophy. Sci Rep. 2018;8(1):1898. doi: 10.1038/s41598-018-20287-3
  • Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature. 1959;183(4676):1654–5. doi: 10.1038/1831654a0
  • Machado OAS, Diniz VLS, Passos MEP, et al. Physical exercise increases global and gene-specific (interleukin-17 and interferon-γ) DNA methylation in lymphocytes from aged women. Exp Physiol. 2021;106(9):1878–1885. doi: 10.1113/EP089673
  • Ronn T, Volkov P, Davegardh C, et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013;9(6):e1003572. doi: 10.1371/journal.pgen.1003572
  • Fabre O, Ingerslev LR, Garde C, et al. Exercise training alters the genomic response to acute exercise in human adipose tissue. Epigenomics. 2018;10(8):1033–50. doi: 10.2217/epi-2018-0039
  • Robinson MM, Dasari S, Konopka AR, et al. Enhanced protein translation underlies improved metabolic and physical adaptations to different exercise training modes in young and Old Humans. Cell Metab. 2017;25(3):581–92. doi: 10.1016/j.cmet.2017.02.009
  • Shu C, Zhang X, Aouizerat BE, et al. Comparison of methylation capture sequencing and infinium MethylationEPIC array in peripheral blood mononuclear cells. Epigenet Chromatin. 2020;13(1):51. doi: 10.1186/s13072-020-00372-6
  • Greenwood EA, Noel MW, Kao CN, et al. Vigorous exercise is associated with superior metabolic profiles in polycystic ovary syndrome independent of total exercise expenditure. Fertil Sterility. 2016;105(2):486–93. doi: 10.1016/j.fertnstert.2015.10.020
  • Gibbs WW. Biomarkers and ageing: the clock-watcher. Nature. 2014;508(7495):168–70. doi: 10.1038/508168a
  • Martins I, Ribeiro IP, Jorge J, et al. Liquid biopsies: applications for cancer diagnosis and monitoring. Genes (Basel). 2021;12(3):12. doi: 10.3390/genes12030349