815
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Using methylation data to improve transcription factor binding prediction

, & ORCID Icon
Article: 2309826 | Received 07 Aug 2023, Accepted 01 Jan 2024, Published online: 01 Feb 2024

References

  • Yan J, Qiu Y, Ribeiro Dos Santos AM, et al. Systematic analysis of binding of transcription factors to noncoding variants. Nature. 2021;591(7848):147–14. Epub 2021/01/29 PubMed PMID: 33505025; PMCID: PMC9367673. doi: 10.1038/s41586-021-03211-0
  • Ghandi M, Lee D, Mohammad-Noori M, et al. Enhanced regulatory sequence prediction using gapped k-mer features. PLoS Comput Biol. 2014;10(7):e1003711. Epub 2014/07/18 PubMed PMID: 25033408; PMCID: PMC4102394. doi: 10.1371/journal.pcbi.1003711
  • Schmidt F, Gasparoni N, Gasparoni G, et al. Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction. Nucleic Acids Res. 2017;45(1):54–66. Epub 2016/12/03 PubMed PMID: 27899623; PMCID: PMC5224477. doi: 10.1093/nar/gkw1061
  • Pique-Regi R, Degner JF, Pai AA, et al. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 2011;21(3):447–455. Epub 2010/11/26 PubMed PMID: 21106904; PMCID: PMC3044858. doi: 10.1101/gr.112623.110
  • Whitington T, Perkins AC, Bailey TL. High-throughput chromatin information enables accurate tissue-specific prediction of transcription factor binding sites. Nucleic Acids Res. 2009;37(1):14–25. Epub 2008/11/08 PubMed PMID: 18988630; PMCID: PMC2662491. doi: 10.1093/nar/gkn866
  • Singh R, Lanchantin J, Robins G, et al. DeepChrome: deep-learning for predicting gene expression from histone modifications. Bioinformatics. 2016;32(17):i639–i48. Epub 2016/09/03 PubMed PMID: 27587684. doi: 10.1093/bioinformatics/btw427
  • Rye M, Saetrom P, Handstad T, et al. Clustered ChIP-seq-defined transcription factor binding sites and histone modifications map distinct classes of regulatory elements. BMC Biol. 2011;9:80. Epub 2011/11/26 PubMed PMID: 22115494: doi: 10.1186/1741-7007-9-80
  • Li Z, Schulz MH, Look T, et al. Identification of transcription factor binding sites using ATAC-seq. Genome Biol. 2019;20(1):45. Epub 2019/02/28 PubMed PMID: 30808370; PMCID: PMC6391789. doi: 10.1186/s13059-019-1642-2
  • Yardimci GG, Frank CL, Crawford GE, et al. Explicit DNase sequence bias modeling enables high-resolution transcription factor footprint detection. Nucleic Acids Res. 2014;42(19):11865–11878. Epub 2014/10/09 PubMed PMID: 25294828. doi: 10.1093/nar/gku810
  • Gusmao EG, Allhoff M, Zenke M, et al. Analysis of computational footprinting methods for DNase sequencing experiments. Nat Methods. 2016;13(4):303–9. Epub 2016/02/24 PubMed PMID: 26901649. doi: 10.1038/nmeth.3772
  • Ramachandran P, Palidwor GA, Perkins TJ. BIDCHIPS: bias decomposition and removal from ChIP-seq data clarifies true binding signal and its functional correlates. Epigenetics Chromatin. 2015;8(1):33. Epub 2015/09/22 PubMed PMID: 26388941; PMCID: PMC4574076. doi: 10.1186/s13072-015-0028-2
  • Kaluscha S, Domcke S, Wirbelauer C, et al. Evidence that direct inhibition of transcription factor binding is the prevailing mode of gene and repeat repression by DNA methylation. Nat Genet. 2022;54(12):1895–906. Epub 2022/12/06 PubMed PMID: 36471082; PMCID: PMC9729108. doi: 10.1038/s41588-022-01241-6
  • Kribelbauer JF, Lu XJ, Rohs R, et al. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J Mol Biol. 2020;432(6):1801–1815. Epub 2019/11/07 PubMed PMID: 31689433; PMCID: PMC6961349. doi: 10.1016/j.jmb.2019.10.021
  • Domcke S, Bardet AF, Adrian Ginno P, et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature. 2015;528(7583):575–9. Epub 2015/12/18 PubMed PMID: 26675734. doi: 10.1038/nature16462
  • Liu L, Jin G, Zhou X. Modeling the relationship of epigenetic modifications to transcription factor binding. Nucleic Acids Res. 2015;43(8):3873–3885. Epub 2015/03/31 PubMed PMID: 25820421; PMCID: PMC4417166. doi: 10.1093/nar/gkv255
  • Yin Y, Morgunova E, Jolma A, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337). Epub 2017/05/06 PubMed PMID: 28473536; PMCID: PMC8009048. doi: 10.1126/science.aaj2239
  • Wang G, Luo X, Wang J, et al. MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Res. 2018;46(D1):D146–D51. Epub 2017/11/18 PubMed PMID: 29145608; PMCID: PMC5753207. doi: 10.1093/nar/gkx1096
  • Zuo Z, Roy B, Chang YK, et al. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Sci Adv. 2017;3(11):eaao1799. Epub 2017/11/22 PubMed PMID: 29159284; PMCID: PMC5694663. doi: 10.1126/sciadv.aao1799
  • Xu T, Li B, Zhao M, et al. Base-resolution methylation patterns accurately predict transcription factor bindings in vivo. Nucleic Acids Res. 2015;43(5):2757–2766. Epub 2015/02/28 PubMed PMID: 25722376; PMCID: PMC4357735. doi: 10.1093/nar/gkv151
  • Choy MK, Movassagh M, Goh HG, et al. Genome-wide conserved consensus transcription factor binding motifs are hyper-methylated. BMC Genomics. 2010;11:519. Epub 2010/09/30 PubMed PMID: 20875111; PMCID: PMC2997012: doi: 10.1186/1471-2164-11-519
  • Xuan Lin QX, Sian S, An O, et al. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Res. 2019;47(D1):D145–D54. Epub 2018/11/01 PubMed PMID: 30380113; PMCID: PMC6323897. doi: 10.1093/nar/gky1005
  • Maurano MT, Wang H, John S, et al. Role of DNA methylation in modulating transcription factor occupancy. Cell Rep. 2015;12(7):1184–1195. Epub 2015/08/11 PubMed PMID: 26257180. doi: 10.1016/j.celrep.2015.07.024
  • NHLBI Trans-Omics for Precision Medicine (TOPMed). https://topmed.nhlbi.nih.gov/
  • Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011;27(7):1017–8. Epub 2011/02/19 PubMed PMID: 21330290; PMCID: PMC3065696. doi: 10.1093/bioinformatics/btr064
  • Weirauch MT, Yang A, Albu M, et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell. 2014;158(6):1431–43. Epub 2014/09/13 PubMed PMID: 25215497. doi: 10.1016/j.cell.2014.08.009
  • Quinlan AR, Hall IM. Bedtools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. Epub 2010/01/30 PubMed PMID: 20110278; PMCID: PMC2832824. doi: 10.1093/bioinformatics/btq033
  • Cheneby J, Menetrier Z, Mestdagh M, et al. ReMap 2020: a database of regulatory regions from an integrative analysis of human and Arabidopsis DNA-binding sequencing experiments. Nucleic Acids Res. 2020;48(D1):D180–D8. Epub 2019/10/31 PubMed PMID: 31665499; PMCID: PMC7145625. doi: 10.1093/nar/gkz945
  • Davis CA, Hitz BC, Sloan CA, et al. The encyclopedia of DNA elements (ENCODE): data portal update. Nucleic Acids Res. 2018;46(D1):D794–D801. Epub 2017/11/11 PubMed PMID: 29126249; PMCID: PMC5753278. doi: 10.1093/nar/gkx1081
  • Arloth J, Bader DM, Roh S, et al. Re-Annotator: Annotation Pipeline for Microarray Probe Sequences. PLoS One. 2015;10(10):e0139516. Epub 2015/10/02 PubMed PMID: 26426330; PMCID: PMC4591122. doi: 10.1371/journal.pone.0139516
  • Barbosa-Morais NL, Dunning MJ, Samarajiwa SA, et al. A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data. Nucleic Acids Res. 2010;38(3):e17. Epub 2009/11/20 PubMed PMID: 19923232; PMCID: PMC2817484. doi: 10.1093/nar/gkp942
  • Sonawane AR, DeMeo DL, Quackenbush J, et al. Constructing gene regulatory networks using epigenetic data. NPJ Syst Biol Appl. 2021;7(1):45. Epub 2021/12/11 PubMed PMID: 34887443. doi: 10.1038/s41540-021-00208-3
  • Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99. Epub 2015/12/18 PubMed PMID: 26673039; PMCID: PMC4864062. doi: 10.2217/epi.15.114
  • Rishi V, Bhattacharya P, Chatterjee R, et al. CpG methylation of half-CRE sequences creates C/EBPalpha binding sites that activate some tissue-specific genes. Proc Natl Acad Sci USA. 2010;107(47):20311–20316. Epub 2010/11/10 PubMed PMID: 21059933; PMCID: PMC2996703. doi: 10.1073/pnas.1008688107
  • Mann IK, Chatterjee R, Zhao J, et al. CG methylated microarrays identify a novel methylated sequence bound by the CEBPB|ATF4 heterodimer that is active in vivo. Genome Res. 2013;23(6):988–997. Epub 2013/04/18 PubMed PMID: 23590861; PMCID: PMC3668366. doi: 10.1101/gr.146654.112
  • Sayeed SK, Zhao J, Sathyanarayana BK, et al. C/EBPbeta (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. Biochim Biophys Acta. 2015;1849(6):583–589. Epub 2015/03/18 PubMed PMID: 25779641; PMCID: PMC7857639. doi: 10.1016/j.bbagrm.2015.03.002
  • Vinson C, Chatterjee R. CG methylation. Epigenomics. 2012;4(6):655–63. Epub 2012/12/19 PubMed PMID: 23244310; PMCID: PMC3566568. doi: 10.2217/epi.12.55
  • Dyer M, Lin QXX, Shapoval S, et al. MethMotif.Org 2023: a database integrating context-specific transcription factor-binding motifs with DNA methylation patterns. Nucleic Acids Res. 2024;52(D1):D222–D228. Epub 2023/10/18 PubMed PMID: 37850642. doi: 10.1093/nar/gkad894
  • Loyfer N, Magenheim J, Peretz A, et al. A DNA methylation atlas of normal human cell types. Nature. 2023;613(7943):355–364. Epub 2023/01/05 PubMed PMID: 36599988; PMCID: PMC9811898 employees, shareholders and/or founders at GRAIL, Inc. J.M., J.M., I.F.-F., R.S., Y.D., B.G. and T.K. have filed patents on cfDNA analysis technology. The remaining authors declare no competing interests. doi: 10.1038/s41586-022-05580-6