1,249
Views
0
CrossRef citations to date
0
Altmetric
Review

The one-carbon metabolism as an underlying pathway for placental DNA methylation – a systematic review

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2318516 | Received 25 Oct 2023, Accepted 07 Feb 2024, Published online: 14 Mar 2024

References

  • Gluckman PD, Hanson MA, Cooper C. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–26. doi: 10.1056/NEJMra0708473
  • Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007 May;261(5):412–7. doi: 10.1111/j.1365-2796.2007.01809.x
  • Bianco-Miotto TCJ, Craig JM, Gasser YP, et al. Epigenetics and DOHaD: from basics to birth and beyond. J Dev Orig Health Dis. 2017 Oct;8(5):513–519. doi: 10.1017/S2040174417000733
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi: 10.1038/npp.2012.112
  • Jin B, Li Y, Robertson KD. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes & Cancer. 2011 Jun;2(6):607–617. doi: 10.1177/1947601910393957
  • Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019 Oct;20(10):590–607. doi: 10.1038/s41580-019-0159-6
  • Steegers-Theunissen RP, Twigt J, Pestinger V. The periconceptional period, reproduction and long-term health of offspring: the importance of one-carbon metabolism. Human Reproduction Update. 2013 Nov-Dec;19(6):640–655. doi: 10.1093/humupd/dmt041
  • Zeng Y, Chen T. DNA methylation reprogramming during mammalian development. Genes (Basel). 2019 Mar 29;10(4):257. doi: 10.3390/genes10040257
  • Friso S, Udali S, De Santis D. One-carbon metabolism and epigenetics. Molecular Aspects Of Medicine. 2017 Apr;54:28–36. doi: 10.1016/j.mam.2016.11.007
  • Korsmo HW, Jiang X. One carbon metabolism and early development: a diet-dependent destiny. Trends In Endocrinology & Metabolism. 2021 Aug;32(8):579–593. doi: 10.1016/j.tem.2021.05.011
  • McGee MB, Bainbridge S, Fontaine-Bisson B. A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes. Nutrition Reviews. 2018; Jun 1;76(6):469–478. doi: 10.1093/nutrit/nuy006
  • James JP, Sajjadi AS, Tomar A, et al. EMPHASIS study group. Candidate genes linking maternal nutrient exposure to offspring health via DNA methylation: a review of existing evidence in humans with specific focus on one-carbon metabolism. Int J Epidemiol. 2018 Dec 1;47(6):1910–1937. doi: 10.1093/ije/dyy153
  • Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012 Aug;23(8):853–859. doi: 10.1016/j.jnutbio.2012.03.003
  • Lee HS. Impact of maternal diet on the epigenome during in utero life and the developmental programming of diseases in childhood and adulthood. Nutrients. 2015 Nov 17;7(11):9492–507. doi: 10.3390/nu7115467
  • Steegers-Theunissen S-TR, Obermann-Borst SA, Kremer D, et al. Periconceptional maternal folic acid use of 400 µg per day is related to increased methylation of the IGF2 gene in the very young child. PloS One. 2009 Nov 16;4(11):e7845. doi: 10.1371/journal.pone.0007845
  • Sinclair KD, Allegrucci C, Singh R, et al. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status. Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19351–19356. doi: 10.1073/pnas.0707258104
  • Clare CE, Brassington AH, Kwong WY. One-Carbon Metabolism: linking nutritional biochemistry to epigenetic programming of long-term development. Ann Rev Anim Biosci. 2019; Feb 15;7(1):263–287. doi: 10.1146/annurev-animal-020518-115206
  • Waterland RA, Travisano M, Tahiliani KG, et al. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes (Lond). 2008 Sep;32(9):1373–1379. doi: 10.1038/ijo.2008.100
  • Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002 Aug;132(8):2393S–2400S. doi: 10.1093/jn/132.8.2393S
  • Tobi EW, Slieker RC, Stein AD, et al. Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome. Int J Epidemiol. 2015 Aug;44(4):1211–1223. doi: 10.1093/ije/dyv043
  • Burton GJ, Jauniaux E. What is the placenta? Am J Obstet Gynecol. 2015 Oct;213(4):SS6.e1–S6.e4. doi: 10.1016/j.ajog.2015.07.050
  • Nelissen ECM, van Montfoort APA, Dumoulin JLH. Epigenetics and the placenta. Hum Reprod Update. 2011;17(3):397–417. doi: 10.1093/humupd/dmq052
  • Wong AIC, Lo YMD. Noninvasive fetal genomic, methylomic, and transcriptomic analyses using maternal plasma and clinical implications. Trends Mol Med. 2015;21(2):98–108. doi: 10.1016/j.molmed.2014.12.006
  • Liu H-Y, Liu S-M, Zhang Y-Z. Maternal folic acid supplementation mediates offspring health via DNA methylation. Reprod Sci. 2020 Apr;27(4):963–976. doi: 10.1007/s43032-020-00161-2
  • Mandaviya PR, Stolk L, Heil SG. Homocysteine and DNA methylation: a review of animal and human literature. Mol Genet Metab. 2014 Dec;113(4):243–252. doi: 10.1016/j.ymgme.2014.10.006
  • Thompson RP, Nilsson E, Skinner MK. Environmental epigenetics and epigenetic inheritance in domestic farm animals. Anim Reprod Sci. 2020 Sep;220:106316. doi: 10.1016/j.anireprosci.2020.106316
  • Campagna MP, Xavier A, Lechner-Scott J, et al. Epigenome-wide association studies: current knowledge, strategies and recommendations. Clin Epigenetics. 2021; Dec 4;13(1):214. doi: 10.1186/s13148-021-01200-8
  • Shamseer SL, Moher D, Clarke M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015; Jan 2;349(jan02 1):g7647. doi: 10.1136/bmj.g7647
  • Hamilton O. Quality assessment tool for quantitative studies: national collaborating centre for methods and tools 2008 [Updated 2020 Apr13]. Available from: https://dev.nccmt.ca/knowledge-repositories/search/14.
  • Devi S, Mukhopadhyay A, Dwarkanath P, et al. Combined vitamin B-12 and balanced protein-energy supplementation affect homocysteine remethylation in the methionine cycle in pregnant south Indian women of low vitamin B-12 status. J Nutr. 2017;147(6):1094–103. doi: 10.3945/jn.116.241042
  • Dou JF, Middleton LYM, Zhu Y, et al. Prenatal vitamin intake in first month of pregnancy and DNA methylation in cord blood and placenta in two prospective cohorts. Epigenet Chromatin. 2022;15(1):28. doi: 10.1186/s13072-022-00460-9
  • Lecorguille M, Charles MA, Lepeule J, et al. Association between dietary patterns reflecting one-carbon metabolism nutrients intake before pregnancy and placental DNA methylation. Epigenetics. 2022;17(7):715–30. doi: 10.1080/15592294.2021.1957575
  • Castillo-Castrejon M, Yang IV, Davidson EJ, et al. Preconceptional lipid-based nutrient supplementation in 2 low-resource countries results in distinctly different IGF-1/mTOR placental responses. J Nutr. 2021;151(3):556–569. doi: 10.1093/jn/nxaa354
  • Jiang X, Yan J, West AA, et al. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012;26(8):3563–74. doi: 10.1096/fj.12-207894
  • Liu J, Zhang Z, and Xu J, et al. Genome-wide DNA methylation changes in placenta tissues associated with small for gestational age newborns; cohort study in the Chinese population. Epigenomics. 2019;11(12):1399–412. doi: 10.2217/epi-2019-0004
  • Loke YJ, Galati JC, Morley R, et al. Association of maternal and nutrient supply line factors with DNA methylation at the imprinted IGF2/H19 locus in multiple tissues of newborn twins. Epigenetics. 2013;8(10):1069–1079. doi: 10.4161/epi.25908
  • Nakanishi M, Funahashi N, Fukuoka H, et al. Effects of maternal and fetal choline concentrations on the fetal growth and placental DNA methylation of 12 target genes related to fetal growth, adipogenesis, and energy metabolism. J Obstet Gynaecol Res. 2021;47(2):734–44. doi: 10.1111/jog.14599
  • Schmidt RJ, Schroeder DI, Crary-Dooley FK, et al. Self-reported pregnancy exposures and placental DNA methylation in the MARBLES prospective autism sibling study. Environ Epigenet. 2016;2(4):dvw024. doi: 10.1093/eep/dvw024
  • Heil SG, Herzog EM, Griffioen PH, et al. Lower S-adenosylmethionine levels and DNA hypomethylation of placental growth factor (PlGF) in placental tissue of early-onset preeclampsia-complicated pregnancies. PloS One. 2019;14(12):e0226969. doi: 10.1371/journal.pone.0226969
  • Khot VV, Yadav DK, Shrestha S, et al. Hypermethylated CpG sites in the MTR gene promoter in preterm placenta. Epigenomics. 2017;9(7):985–996. doi: 10.2217/epi-2016-0173
  • Moeini N, Momeni AM, Zargar M, et al. The Effect of B9 and B12 Vitamins Deficiency on Hypomethylation of MMP-9 gene Promoter Among Women With Preterm Parturition. Biochem Genet. 2022;60(1):336–350. doi: 10.1007/s10528-021-10099-y
  • van Otterdijk SD, Klett H, Boerries, M, et al. The impact of pre-pregnancy folic acid intake on placental DNA methylation in a fortified cohort. FASEB J. 2023;37(1):e22698. doi: 10.1096/fj.202200476RR
  • Rahat B, Hamid A, Bagga R, et al. Folic acid levels during pregnancy regulate trophoblast invasive behavior and the possible development of preeclampsia. Front Nutr. 2022;9:847136. doi: 10.3389/fnut.2022.847136
  • Sletner L, Moen AEF, Yajnik CS, et al. Maternal glucose and LDL-Cholesterol levels are related to placental leptin gene methylation, and, together with nutritional factors, largely explain a higher methylation level among ethnic south asians. Front Endocrinol. 2021;12:809916. doi: 10.3389/fendo.2021.809916
  • Ge J, Wang J, Zhang F, et al. Correlation between MTHFR gene methylation and pre-eclampsia, and its clinical significance. Genet Mol Res. 2015;14:8021–8. doi: 10.4238/2015.July.17.10
  • Pinunuri R, Castano-Moreno E, Llanos MN, et al. Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta. 2020;94:202–25. doi: 10.1016/j.placenta.2020.03.009
  • Tserga A, Binder AM, Michels KB. Impact of folic acid intake during pregnancy on genomic imprinting of IGF2/H19 and 1-carbon metabolism. FASEB J. 2017;31(12):5149–58. doi: 10.1096/fj.201601214RR
  • Zhu Y, Mordaunt CE, Yasui DH, et al. Placental DNA methylation levels at CYP2E1 and IRS2 are associated with child outcome in a prospective autism study. Hum Mol Genet. 2019;28(16):2659–74. doi: 10.1093/hmg/ddz084
  • Kulkarni A, Chavan-Gautam P, Mehendale S, et al. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30(2):79–84. doi: 10.1089/dna.2010.1084
  • Jiang X, Greenwald E, Jack-Roberts C. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in in Vitro Models of Hyperglycemia. Nutr Metab Insights. 2016;9:NMI.S29465. doi: 10.4137/NMI.S29465
  • Rahat B, Mahajan A, Bagga R, et al. Epigenetic modifications at DMRs of placental genes are subjected to variations in normal gestation, pathological conditions and folate supplementation. Sci Rep. 2017;7(1):40774. doi: 10.1038/srep40774
  • Pinunuri R, Castano-Moreno E, Llanos MN, et al. Epigenetic regulation of folate receptor-α (FOLR1) in human placenta of preterm newborns. Placenta. 2020;94:20–25. doi: 10.1016/j.placenta.2020.03.009
  • Nordin NM, Bergman D, Halje M, et al. Epigenetic regulation of the Igf2/H19 gene cluster. Cell Proliferation. 2014 Jun;47(3):189–199. doi: 10.1111/cpr.12106
  • Pauwels PS, Ghosh M, Duca RC, et al. Godderis L maternal intake of methyl-group donors affects DNA methylation of metabolic genes in infants. Clin Epigenetics. 2017 Feb 7;9(1):16. doi: 10.1186/s13148-017-0321-y
  • Haggarty HP, Hoad G, Campbell DM, et al. Folate in pregnancy and imprinted gene and repeat element methylation in the offspring. Am J Clin Nutr. 2013 Jan;97(1):94–99. Epub Nov 14. PMID: 23151531. doi: 10.3945/ajcn.112.042572
  • Qadir MI, Ahmed Z. Lep expression and its role in obesity and type-2 diabetes. Crit Rev Eukaryot Gene Expr. 2017;27(1):47–51. doi: 10.1615/CritRevEukaryotGeneExpr.2017019386
  • Yabluchanskiy YA, Ma Y, Iyer RP, et al. Matrix metalloproteinase-9: many shades of function in cardiovascular disease. Physiology. 2013 Nov;28(6):391–403. doi: 10.1152/physiol.00029.2013
  • Tjwa TM, Luttun A, Autiero M. VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res. 2003 Oct;314(1):5–14. doi: 10.1007/s00441-003-0776-3
  • Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011 Jan;31(1):33–46. doi: 10.1016/j.semnephrol.2010.10.004
  • Chavatte-Palmer C-P-P, Velazquez MA, Jammes H. Review: Epigenetics, developmental programming and nutrition in herbivores. Animal. 2018 Dec;12(s2):s363–s371. doi: 10.1017/S1751731118001337
  • Rasmussen L, Knorr S, Antoniussen CS, et al. The impact of lifestyle, diet and physical activity on epigenetic changes in the offspring—A systematic review. Nutrients. 2021;13(8):2821. doi: 10.3390/nu13082821
  • Lapehn S, Paquette AG. The Placental Epigenome as a Molecular Link Between Prenatal Exposures and Fetal Health Outcomes Through the DOHaD Hypothesis. Curr Envir Health Rpt. 2022;9(3):490–501. doi: 10.1007/s40572-022-00354-8
  • Herzog EM, Eggink AJ, Willemsen SP, et al. The tissue-specific aspect of genome-wide DNA methylation in newborn and placental tissues: implications for epigenetic epidemiologic studies. J Dev Orig Health Dis. 2021 Feb;12(1):113–123. doi: 10.1017/S2040174420000136