1,892
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methylation patterns associated with C-reactive protein in racially and ethnically diverse populations

ORCID Icon, , , , , ORCID Icon, , , , , , , , , , ORCID Icon, , ORCID Icon, , , , , , , , , , , ORCID Icon, , , , , , , , , , & show all
Article: 2333668 | Received 30 Nov 2023, Accepted 17 Mar 2024, Published online: 03 Apr 2024

References

  • Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–19. doi: 10.1038/nri2925
  • Peikert A, Kaier K, Merz J, et al. Residual inflammatory risk in coronary heart disease: incidence of elevated high-sensitive CRP in a real-world cohort. Clin Res Cardiol. 2020;109(3):315–323. doi: 10.1007/s00392-019-01511-0
  • Hage FG, Szalai AJ. C-reactive protein gene polymorphisms, C-reactive protein blood levels, and cardiovascular disease risk. J Am Coll Cardiol. 2007;50(12):1115–1122. doi: 10.1016/j.jacc.2007.06.012
  • Del Giudice M, Gangestad SW Rethinking IL-6 and CRP: why they are more than inflammatory biomarkers, and why it matters. Brain Behav Immun. 2018 May;70:61–75. doi: 10.1016/j.bbi.2018.02.013
  • Sproston NR, Ashworth JJ. Role of C-reactive protein at sites of inflammation and infection. Front Immunol. 2018;9:754. doi: 10.3389/fimmu.2018.00754
  • Ligthart S, Vaez A, Võsa U, et al. Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. Am J Hum Genet. 2018;103(5):691–706. doi: 10.1016/j.ajhg.2018.09.009
  • Said S, Pazoki R, Karhunen V, et al. Genetic analysis of over half a million people characterises C-reactive protein loci. Nat Commun. 2022;13:2198. doi: 10.1038/s41467-022-29650-5
  • van der Harst P, de Windt LJ, Chambers JC. Translational perspective on epigenetics in cardiovascular disease. J Am Coll Cardiol. 2017;70(5):590–606. doi: 10.1016/j.jacc.2017.05.067
  • Ligthart S, Marzi C, Aslibekyan S, et al. DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome bio. 2016;17(1):1–15. doi: 10.1186/s13059-016-1119-5
  • Wielscher M, Mandaviya PR, Kuehnel B, et al. DNA methylation signature of chronic low-grade inflammation and its role in cardio-respiratory diseases. Nat Commun. 2022;13(1):1–14. doi: 10.1038/s41467-022-29792-6
  • Xia Y-Y, Ding Y-B, Liu X-Q, et al. Racial/Ethnic disparities in human DNA methylation. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer. 2014 Aug 01;1846(1):258–262. doi: 10.1016/j.bbcan.2014.07.001
  • Chitrala KN, Hernandez DG, Nalls MA, et al. Race-specific alterations in DNA methylation among middle-aged African Americans and whites with metabolic syndrome. Epigenetics. 2020 May;15(5):462–482. doi: 10.1080/15592294.2019.1695340
  • Song MA, Seffernick AE, Archer KJ, et al. Race/ethnicity-associated blood DNA methylation differences between Japanese and European American women: an exploratory study. Clin Epigenetics. 2021 Oct 11;13(1):188. doi: 10.1186/s13148-021-01171-w
  • Coit P, Ortiz-Fernandez L, Lewis EE, et al. A longitudinal and transancestral analysis of DNA methylation patterns and disease activity in lupus patients. JCI Insight. 2020 Nov 19;5(22). doi: 10.1172/jci.insight.143654
  • Marzi C, Holdt LM, Fiorito G, et al. Epigenetic signatures at AQP3 and SOCS3 engage in low-grade inflammation across different tissues. PLoS One. 2016;11(11):e0166015. doi: 10.1371/journal.pone.0166015
  • Myte R, Sundkvist A, Van Guelpen B, et al. Circulating levels of inflammatory markers and DNA methylation, an analysis of repeated samples from a population based cohort. Epigenetics. 2019;14(7):649–659. doi: 10.1080/15592294.2019.1603962
  • Chilunga FP, Henneman P, Venema A, et al. Genome-wide DNA methylation analysis on C-reactive protein among Ghanaians suggests molecular links to the emerging risk of cardiovascular diseases. NPJ Genom Med. 2021 Jun 11;6(1):46. doi: 10.1038/s41525-021-00213-9
  • Cushman M, McClure LA, Howard VJ, et al. Implications of increased C-Reactive protein for cardiovascular risk stratification in Black and White men and women in the US. Clin Chem. 2009;55(9):1627–1636. doi: 10.1373/clinchem.2008.122093
  • Barnes EL, Loftus EV, Kappelman MD. Effects of race and ethnicity on diagnosis and management of inflammatory bowel diseases. Gastroenterology. 2021 Feb 1;160(3):677–689. doi: 10.1053/j.gastro.2020.08.064
  • Lutsey PL, Cushman M, Steffen LM, et al. Plasma hemostatic factors and endothelial markers in four racial/ethnic groups: the MESA study. J Thromb Haemost. 2006 Dec;4(12):2629–35. doi: 10.1111/j.1538-7836.2006.02237.x
  • Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinf. 2012 May 8;13(1):86. doi: 10.1186/1471-2105-13-86
  • Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2016;45(4):e22. doi: 10.1093/nar/gkw967
  • van Iterson M, van Zwet EW, Heijmans BT. Controlling bias and inflation in epigenome-and transcriptome-wide association studies using the empirical null distribution. Genome Bio. 2017;18(1):1–13. doi: 10.1186/s13059-016-1131-9
  • Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010 Sep 1;26(17):2190–1. doi: 10.1093/bioinformatics/btq340
  • Andrews SV, Ladd-Acosta C, Feinberg AP, et al. “Gap hunting” to characterize clustered probe signals in Illumina methylation array data. Epigenet Chromatin. 2016 Dec 7;9(1):56. doi: 10.1186/s13072-016-0107-z
  • Battram T, Yousefi P, Crawford G, et al. The EWAS catalog: a database of epigenome-wide association studies. Wellcome Open Res. 2022;7:41. doi: 10.12688/wellcomeopenres.17598.2
  • Keshawarz A, Bui H, Joehanes R, et al. Expression quantitative trait methylation analysis elucidates gene regulatory effects of DNA methylation: the framingham heart study. Sci Rep. 2023 Aug 10;13(1):12952. doi: 10.1038/s41598-023-39936-3
  • Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021 Aug 28;2(3):100141. doi: 10.1016/j.xinn.2021.100141
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–287. doi: 10.1089/omi.2011.0118
  • Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32(2):286–288. doi: 10.1093/bioinformatics/btv560
  • Yu G. Enrichplot: visualization of functional enrichment result. R package version 1.22.0, https://bioconductor.org/packages/enrichplot. 2023.
  • Jiao X, Sherman BT, Huang DW, et al. DAVID-WS: a stateful web service to facilitate Gene/Protein list analysis. Bioinformatics. 2012;28(13):1805–1806. doi: 10.1093/bioinformatics/bts251
  • Hemani G, Zheng J, Elsworth B, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408. doi: 10.7554/eLife.34408
  • Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics. 2012 May 15;28(10):1353–8. doi: 10.1093/bioinformatics/bts163
  • Zhao Q, Wang J, Hemani G, et al. Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. Ann Stat. 2020;48(3):1742–1769. doi: 10.1214/19-AOS1866
  • Burgess S, Butterworth A, Thompson SG Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013 Nov;37(7):658–65. doi: 10.1002/gepi.21758
  • Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016 May;40(4):304–14. doi: 10.1002/gepi.21965
  • Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–525. doi: 10.1093/ije/dyv080
  • Burgess S, Bowden J, Fall T, et al. Sensitivity analyses for robust causal inference from mendelian randomization analyses with multiple genetic variants. Epidemiology. 2017 Jan;28(1):30–42. doi: 10.1097/EDE.0000000000000559
  • Verbanck M, Chen C-Y, Neale B, et al. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nature Genet. 2018;50(5):693–698. doi: 10.1038/s41588-018-0099-7
  • Hemani G, Tilling K, Davey Smith G, et al. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PloS Genet. 2017;13(11):e1007081. doi: 10.1371/journal.pgen.1007081
  • Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–469. doi: 10.1016/j.molmed.2007.09.002
  • Croker BA, Krebs DL, Zhang J-G, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol. 2003;4(6):540–545. doi: 10.1038/ni931
  • Wang L, Mao Z, Liu X, et al. Combined effects of progesterone and SOCS3 DNA methylation on T2DM: a case–control study. Clin epigenetics. 2021;13(1):1–13. doi: 10.1186/s13148-021-01172-9
  • Benincasa G, Maron BA, Affinito O, et al. Association between circulating CD4+ T cell methylation signatures of network-oriented SOCS3 gene and hemodynamics in patients suffering pulmonary arterial hypertension. J Cardiovasc Trans Res. 2023;16(1):17–30. doi: 10.1007/s12265-022-10294-1
  • Adams AT, Kennedy NA, Hansen R, et al. Two-stage genome-wide methylation profiling in childhood-onset Crohn’s disease implicates epigenetic alterations at the VMP1/MIR21 and HLA loci. Inflamm Bowel Dis. 2014;20(10):1784–1793. doi: 10.1097/MIB.0000000000000179
  • Joustra V, Hageman IL, Satsangi J, et al. Systematic review and meta-analysis of peripheral blood DNA methylation studies in inflammatory bowel disease. J Crohn’s & Colitis. 2023;17(2):185–198. doi: 10.1093/ecco-jcc/jjac119
  • Baumgart S, Ellenrieder V, Fernandez-Zapico ME. Oncogenic transcription factors: cornerstones of inflammation-linked pancreatic carcinogenesis. Gut. 2013;62(2):310–316. doi: 10.1136/gutjnl-2011-301008
  • Walton E, Hemani G, Dehghan A, et al. Systematic evaluation of the causal relationship between DNA methylation and C-reactive protein. bioRxiv. 2018;397836.
  • Onódi Z, Ruppert M, Kucsera D, et al. AIM2-driven inflammasome activation in heart failure. Cardiovasc Res. 2021 Nov 22;117(13):2639–2651. doi: 10.1093/cvr/cvab202
  • Zhang YK, Wu LL, Li TT, et al. The POLR2E rs3787016 polymorphism is associated with susceptibility to and prognosis of gastric cancer. Neoplasma. 2021 May;68(3):665–671. doi: 10.4149/neo_2021_201125N1277
  • Chen B, Jiao Y, Yaolong F, et al. The POLR2E rs3787016 polymorphism is strongly associated with the risk of female breast and cervical cancer. Pathol Res Pract. 2019 May;215(5):1061–1065. doi: 10.1016/j.prp.2019.02.015
  • Hilsabeck TAU, Liu-Bryan R, Guo T, et al. A fly GWAS for purine metabolites identifies human FAM214 homolog medusa, which acts in a conserved manner to enhance hyperuricemia-driven pathologies by modulating purine metabolism and the inflammatory response. Geroscience. 2022 Aug;44(4):2195–2211. doi: 10.1007/s11357-022-00557-9
  • Wang J-Q, Liu Y-R, Xia Q, et al. Emerging roles for NLRC5 in immune diseases. Front Pharmacol. 2019;10:1352. doi: 10.3389/fphar.2019.01352
  • Benkő S, Kovács EG, Hezel F, et al. NLRC5 functions beyond MHC I regulation-what do we know so far? Front Immunol. 2017;8:150. doi: 10.3389/fimmu.2017.00150
  • Zhang L, Jiao C, Liu L, et al. NLRC5: a potential target for central nervous system disorders. Front Immunol. 2021;12:704989. doi: 10.3389/fimmu.2021.704989
  • Luan P, Zhuang J, Zou J, et al. NLRC5 deficiency ameliorates diabetic nephropathy through alleviating inflammation. FASEB J. 2018 Feb;32(2):1070–1084. doi: 10.1096/fj.201700511RR
  • Naitza S, Porcu E, Steri M, et al. A genome-wide association scan on the levels of markers of inflammation in Sardinians reveals associations that underpin its complex regulation. PLoS Genet. 2012;8(1):e1002480. doi: 10.1371/journal.pgen.1002480
  • Cranford TL, Enos RT, Velázquez KT, et al. Role of MCP-1 on inflammatory processes and metabolic dysfunction following high-fat feedings in the FVB/N strain. Int J Obesity. 2016;40(5):844–851. doi: 10.1038/ijo.2015.244
  • Liu T, Zhang L, Joo D, et al. NF-κB signaling in inflammation. Signal transduction and targeted therapy. Signal Transduct Target Ther. 2017;2(1):1–9. doi: 10.1038/sigtrans.2017.23
  • Challagundla N, Saha B, Agrawal-Rajput R. Insights into inflammasome regulation: cellular, molecular, and pathogenic control of inflammasome activation. Immunol Res. 2022;70(5):578–606. doi: 10.1007/s12026-022-09286-9
  • Fan Z, Chen R, Yin W, et al. Effects of AIM2 and IFI16 on Infectious diseases and inflammation. Viral Immunol. 2023 Sep;36(7):438–448. doi: 10.1089/vim.2023.0044
  • Cui J, Chen Y, Wang HY, et al. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother. 2014;10(11):3270–85. doi: 10.4161/21645515.2014.979640
  • Qing F, Liu Z. Interferon regulatory factor 7 in inflammation, cancer and infection. Front Immunol. 2023;14:1190841. doi: 10.3389/fimmu.2023.1190841
  • Liu Y, Aryee MJ, Padyukov L, et al. Epigenome-wide association data implicate DNA methylation as an intermediary of genetic risk in rheumatoid arthritis. Nat Biotechnol. 2013 Feb;31(2):142–7. doi: 10.1038/nbt.2487
  • Somineni HK, Venkateswaran S, Kilaru V, et al. Blood-derived DNA methylation signatures of Crohn’s disease and severity of intestinal inflammation. Gastroenterology. 2019;156(8):2254–2265. e3. doi: 10.1053/j.gastro.2019.01.270
  • Ventham NT, Kennedy NA, Adams AT, et al. Integrative epigenome-wide analysis demonstrates that DNA methylation may mediate genetic risk in inflammatory bowel disease. Nat Commun. 2016 Nov 25;7(1):13507. doi: 10.1038/ncomms13507
  • Leng F, Yu J, Zhang C, et al. Methylated DNMT1 and E2F1 are targeted for proteolysis by L3MBTL3 and CRL4DCAF5 ubiquitin ligase. Nat Commun. 2018;9(1):1641. doi: 10.1038/s41467-018-04019-9
  • Zhang C, Leng F, Saxena L, et al. Proteolysis of methylated SOX2 protein is regulated by L3MBTL3 and CRL4DCAF5 ubiquitin ligase. J Biol Chem. 2019;294(2):476–489. doi: 10.1074/jbc.RA118.005336
  • Zhang S, Xiong X, Sun Y. Functional characterization of SOX2 as an anticancer target. Sig Transduct Target Ther. 2020;5(1):135. doi: 10.1038/s41392-020-00242-3
  • Zheng Q, Wang T, Jiang G, et al. Immunoglobulin superfamily 6 is a molecule involved in the anti-tumor activity of macrophages in lung adenocarcinoma. BMC Cancer. 2023 Nov 30;23(1):1170. doi: 10.1186/s12885-023-11681-w
  • Rong YM, Xu YC, Chen XC, et al. IGSF6 is a novel biomarker to evaluate immune infiltration in mismatch repair-proficient colorectal cancer. Sci Rep. 2023 Nov 21;13(1):20368. doi: 10.1038/s41598-023-47739-9
  • Cai Y, Zuo X, Zuo Y, et al. Transcriptomic analysis reveals shared gene signatures and molecular mechanisms between obesity and periodontitis. Front Immunol. 2023;14:1101854. doi: 10.3389/fimmu.2023.1101854
  • King K, Moody A, Fisher S, et al. Genetic variation in the IGSF6 gene and lack of association with inflammatory bowel disease. Eur J Immunogenet. 2003;30(3):187–190. doi: 10.1046/j.1365-2370.2003.00387.x
  • Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014 Sep 15;23(R1):R89–98. doi: 10.1093/hmg/ddu328
  • Jamieson E, Korologou-Linden R, Wootton RE, et al. Smoking, DNA methylation, and lung function: a Mendelian randomization analysis to investigate causal pathways. Am J Hum Genet. 2020 Mar 5;106(3):315–326. doi: 10.1016/j.ajhg.2020.01.015
  • Jhun M-A, Mendelson M, Wilson R, et al. A multi-ethnic epigenome-wide association study of leukocyte DNA methylation and blood lipids. Nat Commun. 2021;12(1):3987. doi: 10.1038/s41467-021-23899-y
  • Walsh CP, Lindsay EK, Grosse P, et al. A systematic review and meta-analysis of the stability of peripheral immune markers in healthy adults. Brain Behav Immun. 2023 Jan;107:32–46. doi: 10.1016/j.bbi.2022.09.011
  • Danesh J, Wheeler JG, Hirschfield GM, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350(14):1387–1397. doi: 10.1056/NEJMoa032804