695
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Upregulation of GPR133 expression impaired the phagocytosis of macrophages in recurrent spontaneous miscarriage

, , , , , , , ORCID Icon & show all
Article: 2337087 | Received 05 Sep 2023, Accepted 26 Mar 2024, Published online: 02 Apr 2024

References

  • Ansariniya H, Zare F, Mosaffa N, et al. Immunologic deviations in recurrent spontaneous abortion mouse model. Am J Reprod Immunol. 2022;88(6):e13631. doi: 10.1111/aji.13631
  • Zhao QY, Li Q-H, Fu Y-Y, et al. Decidual macrophages in recurrent spontaneous abortion. Front Immunol. 2022;13:994888. doi: 10.3389/fimmu.2022.994888
  • Chen Y, Wu Q, Wei J, et al. Effects of aspirin, vitamin D3, and progesterone on pregnancy outcomes in an autoimmune recurrent spontaneous abortion model. Braz J Med Biol Res. 2021;54(9):e9570. doi: 10.1590/1414-431x2020e9570
  • Williams PJ, Searle RF, Robson SC, et al. Decidual leucocyte populations in early to late gestation normal human pregnancy. J Reprod Immunol. 2009;82(1):24–15. doi: 10.1016/j.jri.2009.08.001
  • Lucas ES, Dyer NP, Murakami K, et al. Loss of endometrial plasticity in recurrent pregnancy loss. Stem Cells. 2016;34(2):346–356. doi: 10.1002/stem.2222
  • Ning F, Liu H, Lash GE. The role of decidual macrophages during normal and pathological pregnancy. Am J Reprod Immunol. 2016;75(3):298–309. doi: 10.1111/aji.12477
  • Djurisic S, Hviid TV. HLA class Ib molecules and immune cells in pregnancy and preeclampsia. Front Immunol. 2014;5:652. doi: 10.3389/fimmu.2014.00652
  • Faas MM, de Vos P. Uterine NK cells and macrophages in pregnancy. Placenta. 2017;56:44–52. doi: 10.1016/j.placenta.2017.03.001
  • Du G, Yu M, Xu Q, et al. Hypomethylation of PRDM1 is associated with recurrent pregnancy loss. J Cell Mol Med. 2020;24(12):7072–7077. doi: 10.1111/jcmm.15335
  • Kim SY, Romero R, Tarca AL, et al. Methylome of fetal and maternal monocytes and macrophages at the feto-maternal interface. Am J Reprod Immunol. 2012;68(1):8–27. doi: 10.1111/j.1600-0897.2012.01108.x
  • Yu J, Zhu T, Wang Z, et al. A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res. 2007;13(24):7296–7304. doi: 10.1158/1078-0432.CCR-07-0861
  • Graham CH, Hawley TS, Hawley RC, et al. Establishment and characterization of first trimester human trophoblast cells with extended lifespan. Exp Cell Res. 1993;206(2):204–211. doi: 10.1006/excr.1993.1139
  • Parry A, Rulands S, Reik W. Active turnover of DNA methylation during cell fate decisions. Nat Rev Genet. 2021;22(1):59–66. doi: 10.1038/s41576-020-00287-8
  • Pliushch G, Schneider E, Weise D, et al. Extreme methylation values of imprinted genes in human abortions and stillbirths. Am J Pathol. 2010;176(3):1084–1090. doi: 10.2353/ajpath.2010.090764
  • Yu M, Du G, Xu Q, et al. Integrated analysis of DNA methylome and transcriptome identified CREB5 as a novel risk gene contributing to recurrent pregnancy loss. EBioMedicine. 2018;35:334–344. doi: 10.1016/j.ebiom.2018.07.042
  • Schuster J, Uzun A, Stablia J, et al. Effect of prematurity on genome wide methylation in the placenta. BMC Med Genet. 2019;20(1):116. doi: 10.1186/s12881-019-0835-6
  • Yang M, Luo J, Li Y, et al. Systems pharmacology-based research on the mechanism of tusizi-sangjisheng herb pair in the treatment of threatened abortion. BioMed Research International. 2020;2020:1–15. doi: 10.1155/2020/4748264
  • Sheng YR, Hu W-T, Wei C-Y, et al. IL-33/ST2 axis affects the polarization and efferocytosis of decidual macrophages in early pregnancy. Am J Reprod Immunol. 2018;79(6):e12836. doi: 10.1111/aji.12836
  • Liu S, Diao L, Huang C, et al. The role of decidual immune cells on human pregnancy. J Reprod Immunol. 2017;124:44–53. doi: 10.1016/j.jri.2017.10.045
  • Kumar S, Birge RB. Efferocytosis. Curr Biol. 2016;26(13):R558–R559. doi: 10.1016/j.cub.2016.01.059
  • Sheng YR, Hu W, Shen H-H, et al. An imbalance of the IL-33/ST2-AXL-efferocytosis axis induces pregnancy loss through metabolic reprogramming of decidual macrophages. Cell Mol Life Sci. 2022;79(3):173. doi: 10.1007/s00018-022-04197-2
  • Frenster JD, Stephan G, Ravn-Boess N, et al. Functional impact of intramolecular cleavage and dissociation of adhesion G protein–coupled receptor GPR133 (ADGRD1) on canonical signaling. J Biologic Chem. 2021;296:100798. doi: 10.1016/j.jbc.2021.100798
  • Bohnekamp J, Schöneberg T. Cell adhesion receptor GPR133 couples to gs protein. J Biol Chem. 2011;286(49):41912–41916. doi: 10.1074/jbc.C111.265934
  • Rossi AG, McCutcheon JC, Roy N, et al. Regulation of macrophage phagocytosis of apoptotic cells by cAMP. J Immunol. 1998;160(7):3562–3568. doi: 10.4049/jimmunol.160.7.3562
  • Aronoff DM, Canetti C, Peters-Golden M. Prostaglandin E2 inhibits alveolar macrophage phagocytosis through an E-prostanoid 2 receptor-mediated increase in intracellular cyclic AMP. J Immunol. 2004;173(1):559–565. doi: 10.4049/jimmunol.173.1.559
  • Rogers LM, Thelen T, Fordyce K, et al. EP4 and EP2 receptor activation of protein kinase a by prostaglandin E2 impairs macrophage phagocytosis of clostridium sordellii. Am J Reprod Immunol. 2014;71(1):34–43. doi: 10.1111/aji.12153
  • Di Benedetto G, Zoccarato A, Lissandron V, et al. Protein kinase a type I and type II define distinct intracellular signaling compartments. Circ Res. 2008;103(8):836–844. doi: 10.1161/CIRCRESAHA.108.174813
  • Viet CT, Yu G, Asam K, et al. The REASON score: an epigenetic and clinicopathologic score to predict risk of poor survival in patients with early stage oral squamous cell carcinoma. Biomark Res. 2021;9(1):42. doi: 10.1186/s40364-021-00292-x
  • Naidoo V, Naidoo M, Ghai M. Cell- and tissue-specific epigenetic changes associated with chronic inflammation in insulin resistance and type 2 diabetes mellitus. Scand J Immunol. 2018;88(6):e12723. doi: 10.1111/sji.12723
  • Kadayifci FZ, Zheng S, Pan YX. Molecular mechanisms underlying the link between diet and DNA methylation. IJMS. 2018;19(12):19(12. doi: 10.3390/ijms19124055
  • Barua S, Junaid MA. Lifestyle, pregnancy and epigenetic effects. Epigenomics. 2015;7(1):85–102. doi: 10.2217/epi.14.71
  • McCullough LE, Miller EE, Calderwood LE, et al. Maternal inflammatory diet and adverse pregnancy outcomes: circulating cytokines and genomic imprinting as potential regulators? Epigenetics. 2017;12(8):688–697. doi: 10.1080/15592294.2017.1347241
  • Alimohammadi M, Makaremi S, Rahimi A, et al. DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics. 2022;14(16):965–986. doi: 10.2217/epi-2022-0143
  • Marshall KL, Wang J, Ji T, et al. The effects of biological aging on global DNA methylation, histone modification, and epigenetic modifiers in the mouse germinal vesicle stage oocyte. Anim Reprod. 2018;15(4):1253–1267. doi: 10.21451/1984-3143-AR2018-0087