838
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vitamin C enhances co-localization of novel TET1 nuclear bodies with both Cajal and PML bodies in colorectal cancer cells

, , , , , , , & show all
Article: 2337142 | Received 16 Aug 2023, Accepted 26 Mar 2024, Published online: 07 Apr 2024

References

  • Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89–14. doi: 10.5114/pg.2018.81072
  • Rawłuszko-Wieczorek AA, Siera A, Jagodziński PP. TET proteins in cancer: Current ‘state of the art’. Crit Rev Oncol Hematol. 2015;96(3):425–436. doi: 10.1016/j.critrevonc.2015.07.008
  • Wu H, Zhang Y. Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev. 2011;25(23):2436–2452. doi: 10.1101/gad.179184.111
  • Neri F, Dettori D, Incarnato D, et al. TET1 is a tumour suppressor that inhibits colon cancer growth by derepressing inhibitors of the WNT pathway. Oncogene. 2015;34(32):4168–4176. doi: 10.1038/onc.2014.356
  • Feng Y, Li X, Cassady K, et al. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front Oncol. 2019;9:210. doi: 10.3389/fonc.2019.00210
  • Xu Y-P, Lv L, Liu Y, et al. Tumor suppressor TET2 promotes cancer immunity and immunotherapy efficacy. J Clin Invest. 2019;129(10):4316–4331. doi: 10.1172/JCI129317
  • Yu S, Yin Y, Hong S, et al. TET1 is a tumor suppressor that inhibits papillary thyroid carcinoma cell migration and invasion. Int J Endocrinol. 2020;2020:3909610. doi: 10.1155/2020/3909610
  • Good CR, Panjarian S, Kelly AD, et al. TET1-mediated hypomethylation activates oncogenic signaling in Triple-Negative breast cancer. Cancer Res. 2018;78(15):4126–4137. doi: 10.1158/0008-5472.CAN-17-2082
  • Wu M, Zhang Y, Tang A, et al. miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer. Iran J Basic Med Sci. 2016;19(3):316–322
  • Tricarico R, Madzo J, Scher G, et al. TET1 and TDG suppress inflammatory response in intestinal tumorigenesis: implications for colorectal tumors with the CpG island methylator phenotype. Gastroen. 2023;164(6):921–936.e1. doi: 10.1053/j.gastro.2023.01.039
  • Kim R, Sheaffer KL, Choi I, et al. Epigenetic regulation of intestinal stem cells by Tet1-mediated DNA hydroxymethylation. Genes Dev. 2016;30(21):2433–2442. doi: 10.1101/gad.288035.116
  • Tian Y-P, Lin A-F, Gan M-F, et al. Global changes of 5-hydroxymethylcytosine and 5-methylcytosine from normal to tumor tissues are associated with carcinogenesis and prognosis in colorectal cancer. J Zhejiang Univ Sci B. 2017;18:747–756 doi:https://doi.org/10.1631/jzus.B1600314
  • Guo H, Zhu H, Zhang J, et al. TET1 suppresses colon cancer proliferation by impairing β-catenin signal pathway. J Cell Biochem. 2019;120(8):12559–12565. doi: 10.1002/jcb.28522
  • Saygili EI, Konukoglu D, Papila C, et al. Levels of plasma vitamin E, vitamin C, TBARS, and cholesterol in male patients with colorectal tumors. Biochem Bio. 2003;68(3):325–328. doi: 10.1023/A:1023010418230
  • van Gorkom GNY, Lookermans EL, Van Elssen CHMJ, et al. The effect of vitamin C (Ascorbic Acid) in the treatment of patients with cancer: a systematic review. Nutrients. 2019;11(5):977. doi: 10.3390/nu11050977
  • Riordan HD, Riordan NH, Jackson JA, et al. Intravenous vitamin C as a chemotherapy agent: a report on clinical cases. P R Health Sci J. 2004;23(2):115–118
  • Pawlowska E, Szczepanska J, Blasiak J. Pro- and antioxidant effects of vitamin C in cancer in correspondence to its dietary and pharmacological concentrations. Oxid Med Cell Longev. 2019;2019:7286737. doi: 10.1155/2019/7286737
  • Yin R, Mao SQ, Zhao B, et al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals. J Am Chem Soc. 2013;135(28):10396–10403. doi: 10.1021/ja4028346
  • Dickson KM, Gustafson CB, Young JI, et al. Ascorbate-induced generation of 5-hydroxymethylcytosine is unaffected by varying levels of iron and 2-oxoglutarate. Biochem Biophys Res Commun. 2013;439(4):522–527. doi: 10.1016/j.bbrc.2013.09.010
  • Gillberg L, Orskov AD, Liu M, et al. Vitamin C - A new player in regulation of the cancer epigenome. Semin Cancer Biol. 2018;51:59–67. doi: 10.1016/j.semcancer.2017.11.001
  • Moyer MP, Manzano LA, Merriman RL, et al. NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev Biol Anim. 1996;32(6):315–317. doi: 10.1007/BF02722955
  • Dupasquier S, Blache P, Picque Lasorsa L, et al. Modulating PKCα activity to target Wnt/β-catenin signaling in colon cancer. Cancers (Basel). 2019;11(5):11. doi: 10.3390/cancers11050693
  • Granier F, Marie S, Al Amir Dache Z, et al. Assessment of dendrigrafts of poly-l-lysine cytotoxicity and cell penetration in cancer cells. ACS Appl Polym Mater. 2022;4(2):908–919. doi: 10.1021/acsapm.1c01354
  • Sawyer IA, Dundr M. Nuclear bodies: built to boost. J Cell Bio. 2016;213(5):509–511. doi: 10.1083/jcb.201605049
  • Staněk D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol. 2017;46:94–101. doi: 10.1016/j.ceb.2017.05.001
  • Guan D, Kao H-Y. The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell Biosci. 2015;5(1):60. doi: 10.1186/s13578-015-0051-9
  • Sahin U, Thé H, Lallemand-Breitenbach V. PML nuclear bodies: assembly and oxidative stress-sensitive sumoylation. Nucleus. 2015;5(6):499–507. doi: 10.4161/19491034.2014.970104
  • Henriksson S, Farnebo M. On the road with WRAP53β: guardian of Cajal bodies and genome integrity. Front Genet. 2015;6:91. doi: 10.3389/fgene.2015.00091
  • Wu MJ, Kim MR, Chen YS, et al. Retinoic acid directs breast cancer cell state changes through regulation of TET2-PKCζ pathway. Oncogene. 2017;36(22):3193–3206. doi: 10.1038/onc.2016.467
  • Peng L, Li Y, Xi Y, et al. Methyl-CpG-binding domain protein 3-like 2 (MBD3L2) promotes Tet2 enzymatic activity for mediating 5mC oxidation. J Cell Sci. 2016. doi:10.1242/jcs.179044
  • Arioka Y, Watanabe A, Saito K, et al. Activation-induced cytidine deaminase alters the subcellular localization of tet family proteins. PLoS One. 2012;7(9):e45031. doi: 10.1371/journal.pone.0045031
  • Senner CE, Chrysanthou S, Burge S, et al. TET1 and 5-hydroxymethylation preserve the stem cell state of mouse trophoblast. Stem Cell Rep. 2020;15(6):1301–1316. doi: 10.1016/j.stemcr.2020.04.009
  • Zhang Q, Liu X, Gao W, et al. Differential regulation of the ten-eleven translocation (TET) Family of Dioxygenases by O-Linked β-N-Acetylglucosamine Transferase (OGT). J Bio Chem. 2014;289(9):5986–5996. doi: 10.1074/jbc.M113.524140
  • Wang K-C, Kang C-H, Tsai C-Y, et al. Ten-eleven translocation 1 dysfunction reduces 5-hydroxymethylcytosine expression levels in gastric cancer cells. Oncol Lett. 2018;15:278–284. doi: 10.3892/ol.2017.7264
  • Barazeghi E, Prabhawa S, Norlen O, et al. Decrease of 5-hydroxymethylcytosine and TET1 with nuclear exclusion of TET2 in small intestinal neuroendocrine tumors. BMC Cancer. 2018;18(1):764. doi: 10.1186/s12885-018-4579-z
  • Xiao P, Zhou XL, Zhang HX, et al. Characterization of the nuclear localization signal of the mouse TET3 protein. Biochem Biophys Res Commun. 2013;439(3):373–377. doi: 10.1016/j.bbrc.2013.08.075
  • Zhang Q, Hu Q, Wang J, et al. Stress modulates Ahi1-dependent nuclear localization of Ten-eleven translocation protein 2. Hum Mol Genet. 2021;30(22):2149–2160. doi: 10.1093/hmg/ddab179
  • Sawyer IA, Sturgill D, Sung M-H, et al. Cajal body function in genome organization and transcriptome diversity. BioEssays. 2016;38(12):1197–1208. doi: 10.1002/bies.201600144
  • Neerukonda SN. Interplay between RNA viruses and promyelocytic leukemia nuclear bodies. Vet Sci. 2021;8(4):57. doi: 10.3390/vetsci8040057
  • Lallemand-Breitenbach V, de Thé H. PML nuclear bodies. Csh Perspect Biol. 2010;2(5):a000661. doi: 10.1101/cshperspect.a000661
  • Cioce M, Lamond A. Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol. 2005;21(1):105–131. doi: 10.1146/annurev.cellbio.20.010403.103738
  • Fu L, Guerrero CR, Zhong N, et al. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J Am Chem Soc. 2014;136(33):11582–11585. doi: 10.1021/ja505305z
  • Delatte B, Wang F, Ngoc LV, et al. Transcriptome-wide distribution and function of RNA hydroxymethylcytosine. Science. 2016;351(6270):282–285. doi: 10.1126/science.aac5253
  • Ismail JN, Ghannam M, Al Outa A, et al. Ten-eleven translocation proteins and their role beyond DNA demethylation – what we can learn from the fly. Epigenetics. 2020;15(11):1139–1150. doi: 10.1080/15592294.2020.1767323
  • Guallar D, Bi X, Pardavila JA, et al. RNA-dependent chromatin targeting of TET2 for endogenous retrovirus control in pluripotent stem cells. Nat Genet. 2018;50(3):443–451. doi: 10.1038/s41588-018-0060-9
  • He C, Bozler J, Janssen K, et al. TET2 chemically modifies tRnas and regulates tRNA fragment levels. Nat Struct Mol Biol. 2021;28(1):1–9. doi: 10.1038/s41594-020-00526-w
  • Lan J, Rajan N, Bizet M, et al. Functional role of Tet-mediated RNA hydroxymethylcytosine in mouse ES cells and during differentiation. Nat Commun. 2020;11(1):11. doi: 10.1038/s41467-020-18729-6
  • Cheray M, Etcheverry A, Jacques C, et al. Cytosine methylation of mature microRnas inhibits their functions and is associated with poor prognosis in glioblastoma multiforme. Mol Cancer. 2020;19(1):36. doi: 10.1186/s12943-020-01155-z
  • Logan M, McLaurin D, Hebert M, et al. Synergistic interactions between Cajal bodies and the miRNA processing machinery. MboC. 2020;31(15):mbc.E20–02. doi: 10.1091/mbc.E20-02-0144
  • Ying Z, Chen T. Chapter 17 - cross talk between noncoding RNAs and DNA methylation and demethylation in cancer. In: Chakrabarti D, Mitra D, editors Cancer and Noncoding RNAs. 1. Boston: Academic Press; 2018. pp. 311–328
  • de Thé H, Le Bras M, Lallemand-Breitenbach V. Acute promyelocytic leukemia, arsenic, and PML bodies. J Cell Bio. 2012;198(1):11–21. doi: 10.1083/jcb.201112044
  • Song C, Wang L, Wu X, et al. PML recruits TET2 to regulate DNA modification and cell proliferation in response to chemotherapeutic agent. Cancer Res. 2018;78(10):2475–2489. doi: 10.1158/0008-5472.CAN-17-3091