610
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SOX6 AU controls myogenesis by cis-modulation of SOX6 in cattle

, , , , , , , , & show all
Article: 2341578 | Received 13 Oct 2023, Accepted 06 Apr 2024, Published online: 14 Apr 2024

References

  • Fang C, Guo F, Zhao X, et al. Biological mechanisms of growth performance and meat quality in porcine muscle tissue. Anim Biotechnol. 2022;33:1246–18. doi: 10.1080/10495398.2021.1886939
  • Buckingham M, Vincent SD. Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev. 2009;19(5):444–453. doi: 10.1016/j.gde.2009.08.001
  • Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: molecular regulation of myogenesis. Cold Spring Harbor Perspect Biol. 2012;4:a008342. doi: 10.1101/cshperspect.a008342
  • Grefte S, Kuijpers-Jagtman AM, Torensma R, et al. Skeletal muscle development and regeneration. Stem Cells Devel. 2007;16:857–868. doi: 10.1089/scd.2007.0058
  • Bridges MC, Daulagala AC, Kourtidis A. Lnccation: lncRNA localization and function. J Cell Bio. 2021;220:e202009045. doi: 10.1083/jcb.202009045
  • Niu L, Lou F, Sun Y, et al. A micropeptide encoded by lncRNA MIR155HG suppresses autoimmune inflammation via modulating antigen presentation. Sci Adv. 2020;6(21). doi: 10.1126/sciadv.aaz2059
  • Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. doi: 10.1038/nrg3606
  • Li Y, Hu J, Guo D, et al. LncRNA SNHG5 promotes the proliferation and cancer stem cell-like properties of HCC by regulating UPF1 and Wnt-signaling pathway. Cancer Genet Ther. 2022;29:1373–1383. doi: 10.1038/s41417-022-00456-3
  • Zhao D, Ge H, Ma B, et al. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein‐induced acute pancreatitis. J Cell Biochem. 2019;120(5):8160–8168. doi: 10.1002/jcb.28097
  • Wang L, Zhao Y, Bao X, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration. Cell Res. 2015;25:335–350. doi: 10.1038/cr.2015.21
  • Zhou L, Sun K, Zhao Y, et al. Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1. Nat Commun. 2015;6(1):10026. doi: 10.1038/ncomms10026
  • Lv W, Jin J, Xu Z, et al. lncMGPF is a novel positive regulator of muscle growth and regeneration. J Cachexia Sarcopenia Muscle. 2020;11(6):1723–1746. doi: 10.1002/jcsm.12623
  • Song C, Yang Z, Jiang R, et al. lncRNA IGF2 as regulates bovine myogenesis through different pathways. Mol Ther Nucleic Acids. 2020;21:874–884. doi: 10.1016/j.omtn.2020.07.002
  • Quiat D, Voelker KA, Pei J, et al. Concerted regulation of myofiber-specific gene expression and muscle performance by the transcriptional repressor Sox6. Proceedings of the National Academy of Sciences. 2011;108:10196–10201.
  • He X, Chai P, Li F, et al. A novel LncRNA transcript, RBAT1, accelerates tumorigenesis through interacting with HNRNPL and cis-activating E2F3. Mol cancer. 2020;19(1):1–20. doi: 10.1186/s12943-020-01232-3
  • Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73
  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–360. doi: 10.1038/nmeth.3317
  • Pertea M, Kim D, Pertea GM, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–1667. doi: 10.1038/nprot.2016.095
  • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–140. doi: 10.1093/bioinformatics/btp616
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118
  • Chen L, Chen Q, Kuang S, et al. USF1-induced upregulation of LINC01048 promotes cell proliferation and apoptosis in cutaneous squamous cell carcinoma by binding to TAF15 to transcriptionally activate YAP1. Cell Death Dis. 2019;10(4):296. doi: 10.1038/s41419-019-1516-2
  • Quan X, Zhao M, Yang X, et al. AP2γ mediated downregulation of lncRNA LINC00511 as a ceRNA suppresses trophoblast invasion by regulating miR-29b-3p/Cyr61 axis. Biomed Pharmacother. 2019;120:109269. doi: 10.1016/j.biopha.2019.109269
  • Li S, Czubryt MP, McAnally J, et al. Requirement for serum response factor for skeletal muscle growth and maturation revealed by tissue-specific gene deletion in mice. Proceedings of the National Academy of Sciences. 2005;102:1082–1087.
  • Mueller AC, Cichewicz MA, Dey BK, et al. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Mol Cell Biol. 2014;35(3):498–513. doi: 10.1128/MCB.01079-14
  • Bravo R, Frank R, Blundell PA, et al. Cyclin/PCNA is the auxiliary protein of DNA polymerase-δ. Nature. 1987;326:515–517. doi: 10.1038/326515a0
  • Wood DJ, Endicott JA. Structural insights into the functional diversity of the CDK–cyclin family. Open Biol. 2018;8(9):180112. doi: 10.1098/rsob.180112
  • Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005;65:3980–3985. doi: 10.1158/0008-5472.CAN-04-3995
  • Luo G, Wang M, Wu X, et al. Long non-coding RNA MEG3 inhibits cell proliferation and induces apoptosis in prostate cancer. Cell Physiol Biochem. 2015;37(6):2209–2220. doi: 10.1159/000438577
  • Rudnicki MA, Jaenisch R. The MyoD family of transcription factors and skeletal myogenesis. BioEssays. 1995;17:203–209. doi: 10.1002/bies.950170306
  • Venuti JM, Morris JH, Vivian JL, et al. Myogenin is required for late but not early aspects of myogenesis during mouse development. J Cell Bio. 1995;128:563–576. doi: 10.1083/jcb.128.4.563
  • Asfour HA, Allouh MZ, Said RS. Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery. Exp Biol Med. 2018;243(2):118–128. doi: 10.1177/1535370217749494
  • Hagiwara N. Sox6, jack of all trades: a versatile regulatory protein in vertebrate development. Dev Dyn. 2011;240:1311–1321. doi: 10.1002/dvdy.22639
  • An C-I, Dong Y, Hagiwara N. Genome-wide mapping of Sox6 binding sites in skeletal muscle reveals both direct and indirect regulation of muscle terminal differentiation by Sox6. BMC Dev Biol. 2011;11(1):1–21. doi: 10.1186/1471-213X-11-59
  • Lin S, Lin X, Zhang Z, et al. Copy number variation in SOX6 contributes to chicken muscle development. Genes (Basel). 2018;9:42. doi: 10.3390/genes9010042
  • Li W, Shen W, Zhang B, et al. Long non-coding RNA LncKdm2b regulates cortical neuronal differentiation by cis-activating Kdm2b. Protein & Cell. 2020;11(3):161–186. doi: 10.1007/s13238-019-0650-z
  • Yang T, Chen W-C, Shi P-C, et al. Long noncoding RNA MAPKAPK5-AS1 promotes colorectal cancer progression by cis-regulating the nearby gene MK5 and acting as a let-7f-1-3p sponge. J Exp Clin Cancer Res. 2020;39(1):1–19. doi: 10.1186/s13046-020-01633-8
  • Vermeulen K, Berneman ZN, Van Bockstaele DR. Cell cycle and apoptosis. Cell Proliferation. 2003;36:165–175. doi: 10.1046/j.1365-2184.2003.00267.x
  • Zhang W, Tong H, Zhang Z, et al. Transcription factor EGR1 promotes differentiation of bovine skeletal muscle satellite cells by regulating MyoG gene expression. J Cell Physiol. 2018;233(1):350–362. doi: 10.1002/jcp.25883
  • De Paepe B. The cytokine growth differentiation factor-15 and skeletal muscle health: portrait of an emerging widely applicable disease biomarker. Int J Mol Sci. 2022;23(21):13180. doi: 10.3390/ijms232113180
  • Zanou N, Gailly P. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways. Cell Mol Life Sci. 2013;70(21):4117–4130. doi: 10.1007/s00018-013-1330-4
  • Lee DH, Kim JE, Kang YJ. Insulin like growth factor binding protein-5 regulates excessive vascular smooth muscle cell proliferation in spontaneously hypertensive rats via ERK 1/2 phosphorylation. Korean J Physiol Pharmacol. 2013;17(2):157. doi: 10.4196/kjpp.2013.17.2.157
  • Long Y, Wang X, Youmans DT, et al. How do lncRNAs regulate transcription? Sci Adv. 2017;3(9):eaao2110. doi: 10.1126/sciadv.aao2110
  • Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nature Genet. 2011;43(7):621–629. doi: 10.1038/ng.848
  • Cenik BK, Liu N, Chen B, et al. Myocardin-related transcription factors are required for skeletal muscle development. Development. 2016;143:2853–2861. doi: 10.1242/dev.135855
  • Fico A, Fiorenzano A, Pascale E, et al. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation. Cell Mol Life Sci. 2019;76(8):1459–1471. doi: 10.1007/s00018-018-3000-z
  • Gong C, Li Z, Ramanujan K, et al. A long non-coding RNA, LncMyoD, regulates skeletal muscle differentiation by blocking IMP2-mediated mRNA translation. Dev cell. 2015;34:181–191. doi: 10.1016/j.devcel.2015.05.009