506
Views
0
CrossRef citations to date
0
Altmetric
Research Article

H4K20me3, H3K4me2 and H3K9me2 mediate the effect of ER on prognosis in breast cancer

, , , , , & ORCID Icon show all
Article: 2343593 | Received 11 Sep 2023, Accepted 09 Apr 2024, Published online: 21 Apr 2024

References

  • Breast cancer - ScienceDirect [Internet]. [cited 2023 Mar 13]. Available from: https://www.sciencedirect.com/science/article/pii/S0140673620323813?via%3Dihub
  • Farcas AM, Nagarajan S, Cosulich S, et al. Genome-Wide Estrogen Receptor Activity in Breast Cancer. Endocrinology. 2021;162(2):bqaa224. doi: 10.1210/endocr/bqaa224
  • Saatci O, Huynh-Dam K-T, Sahin O. Endocrine resistance in breast cancer: from molecular mechanisms to therapeutic strategies. J Mol Med Berl Ger. 2021;99(12):1691–10. doi: 10.1007/s00109-021-02136-5
  • Khan MZI, Uzair M, Nazli A, et al. An overview on Estrogen receptors signaling and its ligands in breast cancer. Eur J Med Chem. 2022;241:114658. doi: 10.1016/j.ejmech.2022.114658
  • Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem. 2021;65(6):867–875. doi: 10.1042/EBC20200167
  • Hervouet E, Cartron P-F, Jouvenot M, et al. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics. 2013;8(3):237–245. doi: 10.4161/epi.23790
  • Benedetti R, Dell’aversana C, De Marchi T, et al. Inhibition of histone demethylases LSD1 and UTX regulates ERα signaling in breast cancer. Cancers (Basel). 2019;11(12):2027. doi: 10.3390/cancers11122027
  • Shi B, Liang J, Yang X, et al. Integration of estrogen and wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells. Mol Cell Biol. 2007;27(14):5105–5119. doi: 10.1128/MCB.00162-07
  • Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, et al. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun. 2016;7(1):12284. doi: 10.1038/ncomms12284
  • Lauberth SM, Nakayama T, Wu X, et al. H3K4me3 interactions with TAF3 regulate preinitiation complex assembly and selective gene activation. Cell. 2013;152(5):1021–1036. doi: 10.1016/j.cell.2013.01.052
  • Kim J, Kim H. Recruitment and biological consequences of histone modification of H3K27me3 and H3K9me3. Ilar J. 2012;53(3–4):232–239. doi: 10.1093/ilar.53.3-4.232
  • P J, Sp M, Sm G. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. cited 2024 Feb 18 2022;23(9):623–640. InternetAvailable from https://pubmed.ncbi.nlm.nih.gov/35562425/
  • Mushtaq A, Mir US, Hunt CR, et al. Role of histone methylation in maintenance of genome integrity. Genes (Basel). 2021;12(7):1000. doi: 10.3390/genes12071000
  • Elsheikh SE, Green AR, Rakha EA, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69(9):3802–3809. doi: 10.1158/0008-5472.CAN-08-3907
  • Marsolier J, Prompsy P, Durand A, et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer. Nat Genet. 2022;54(4):459–468. doi: 10.1038/s41588-022-01047-6
  • Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes - PubMed [Internet]. [cited 2023 Mar 13]. Available from: https://pubmed.ncbi.nlm.nih.gov/26783963/
  • Berger L, Kolben T, Meister S, et al. Expression of H3K4me3 and H3K9ac in breast cancer. J Cancer Res Clin Oncol. 2020;146(8):2017–2027. doi: 10.1007/s00432-020-03265-z
  • Messier TL, Boyd JR, Gordon JAR, et al. Epigenetic and transcriptome responsiveness to ER modulation by tissue selective estrogen complexes in breast epithelial and breast cancer cells. PLOS ONE. 2022;17(7):e0271725. doi: 10.1371/journal.pone.0271725
  • Park U-H, Kang M-R, Kim E-J, et al. ASXL2 promotes proliferation of breast cancer cells by linking ERα to histone methylation. Oncogene. 2016;35(28):3742–3752. doi: 10.1038/onc.2015.443
  • Shao P, Liu Q, Maina PK, et al. Histone demethylase PHF8 promotes epithelial to mesenchymal transition and breast tumorigenesis. Nucleic Acids Res. 2017;45(4):1687–1702. doi: 10.1093/nar/gkw1093
  • Liu J, Feng J, Li L, et al. Arginine methylation-dependent LSD1 stability promotes invasion and metastasis of breast cancer. EMBO Rep. 2020;21(2):e48597. doi: 10.15252/embr.201948597
  • Zhu Q, Huang Y, Marton LJ, et al. Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells. Amino Acids. 2012;42(2–3):887–898. doi: 10.1007/s00726-011-1004-1
  • Yang J, Jubb AM, Pike L, et al. The histone demethylase JMJD2B is regulated by estrogen receptor α and hypoxia, and is a key mediator of estrogen induced growth. Cancer Res. 2010;70(16):6456–6466. doi: 10.1158/0008-5472.CAN-10-0413
  • Li Q-L, Lei P-J, Zhao Q-Y, et al. Epigenomic analysis in a cell-based model reveals the roles of H3K9me3 in breast cancer transformation. Epigenomics. 2017;9(8):1077–1092. doi: 10.2217/epi-2016-0183
  • Hsieh I-Y, He J, Wang L, et al. H3K27me3 loss plays a vital role in CEMIP mediated carcinogenesis and progression of breast cancer with poor prognosis. Biomed Pharmacother Biomed Pharmacother. 2020;123:109728. doi: 10.1016/j.biopha.2019.109728
  • Anwar T, Arellano-Garcia C, Ropa J, et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun. 2018;9(1):2801. doi: 10.1038/s41467-018-05078-8
  • Yokoyama Y, Matsumoto A, Hieda M, et al. Loss of histone H4K20 trimethylation predicts poor prognosis in breast cancer and is associated with invasive activity. Breast Cancer Res BCR. 2014;16(3):R66. doi: 10.1186/bcr3681
  • Wang T, Holt MV, Young NL. The histone H4 proteoform dynamics in response to SUV4-20 inhibition reveals single molecule mechanisms of inhibitor resistance. Epigenet Chromatin. 2018;11(1):29. doi: 10.1186/s13072-018-0198-9
  • He J-R, Tang L-Y, Yu D-D, et al. Epstein-Barr virus and breast cancer: serological study in a high-incidence area of nasopharyngeal carcinoma. Cancer Lett. 2011;309(2):128–136. doi: 10.1016/j.canlet.2011.05.012
  • Camp RL, Dolled-Filhart M, Rimm DL. X-tile: a new bio-informatics tool for biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10(21):7252–7259. doi: 10.1158/1078-0432.CCR-04-0713
  • Tofighi D, MacKinnon DP. Rmediation: an R package for mediation analysis confidence intervals. Behav Res Methods. 2011;43(3):692–700. doi: 10.3758/s13428-011-0076-x
  • Zhou M, Yan J-Q, Chen Q-X, et al. Association of H3K9me3 with breast cancer prognosis by estrogen receptor status. Clin Epigenetics. 2022;14(1):135. doi: 10.1186/s13148-022-01363-y
  • MacKinnon DP, Krull JL, Lockwood CM. Equivalence of the mediation, confounding and suppression effect. Prev Sci Off J Soc Prev Res. 2000;1(4):173. doi: 10.1023/A:1026595011371
  • Wade MA, Jones D, Wilson L, et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res. 2015;43(1):196–207. doi: 10.1093/nar/gku1298
  • Mascha EJ, Dalton JE, Kurz A, et al. Understanding the mechanism: Mediation Analysis in randomized and nonrandomized studies. Anesth Analg. 2013;117(4):980. doi: 10.1213/ANE.0b013e3182a44cb9
  • Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300. doi: 10.1001/jama.2018.19323
  • Padilla-Rodriguez M, Parker SS, Adams DG, et al. The actin cytoskeletal architecture of estrogen receptor positive breast cancer cells suppresses invasion. Nat Commun. 2018;9(1):2980. doi: 10.1038/s41467-018-05367-2
  • Perillo B, Ombra MN, Bertoni A, et al. DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression. Science. 2008;319(5860):202–206. doi: 10.1126/science.1147674
  • Gaughan L, Stockley J, Coffey K, et al. KDM4B is a master regulator of the estrogen receptor signalling cascade. Nucleic Acids Res. 2013;41(14):6892–6904. doi: 10.1093/nar/gkt469
  • Hurtado A, Holmes KA, Ross-Innes CS, et al. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nat Genet. 2011;43(1):27–33. doi: 10.1038/ng.730
  • Xiang Y, Zhu Z, Han G, et al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer. Proc Natl Acad Sci U S A. 2007;104(49):19226–19231. doi: 10.1073/pnas.0700735104
  • Catchpole S, Spencer-Dene B, Hall D, et al. PLU-1/JARID1B/KDM5B is required for embryonic survival and contributes to cell proliferation in the mammary gland and in ER+ breast cancer cells. Int J Oncol. 2011;38(5):1267–1277. doi: 10.3892/ijo.2011.956
  • Sun L, Zhang H, Gao P. Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein Cell. 2022;13(12):877–919. doi: 10.1007/s13238-021-00846-7
  • Liu Y, Liu K, Qin S, et al. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol Ther. 2014;143(3):275–294. doi: 10.1016/j.pharmthera.2014.03.007