677
Views
0
CrossRef citations to date
0
Altmetric
Research article

Role of N6-methyladenosine-related lncRnas in pseudoexfoliation glaucoma

, , , , , , , , & show all
Article: 2348840 | Received 03 Dec 2023, Accepted 23 Apr 2024, Published online: 08 May 2024

References

  • Miglior S, Bertuzzi F. Exfoliative glaucoma: new evidence in the pathogenesis and treatment. Prog Brain Res. 2015;221:233–13. doi: 10.1016/bs.pbr.2015.06.007
  • Aung T, Ozaki M, Lee MC, et al. Genetic association study of exfoliation syndrome identifies a protective rare variant at LOXL1 and five new susceptibility loci. Nat Genet. 2017 Jul;49(7):993–1004. doi: 10.1038/ng.3875
  • Aung T, Ozaki M, Mizoguchi T, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome. Nat Genet. 2015 Apr;47(4):387–392. doi: 10.1038/ng.3226
  • Greene AG, Eivers SB, McDonnell F, et al. Differential lysyl oxidase like 1 expression in pseudoexfoliation glaucoma is orchestrated via DNA methylation. Exp Eye Res. 2020:108349. doi: 10.1016/j.exer.2020.108349
  • Ye H, Jiang Y, Jing Q, et al. LOXL1 hypermethylation in pseudoexfoliation syndrome in the uighur population. Invest Ophthalmol Visual Sci. 2015;56(10):5838–5843. doi: 10.1167/iovs.15-16618
  • Wiggs JL, Yaspan BL, Hauser MA, et al. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLOS Genet. 2012;8(4):e1002654. doi: 10.1371/journal.pgen.1002654
  • Schmitt HM, Johnson WM, Aboobakar IF, et al. Identification and activity of the functional complex between hnRNPL and the pseudoexfoliation syndrome-associated lncRNA, LOXL1-AS1. Hum Mol Genet. 2020 Jul 29;29(12):1986–1995. doi: 10.1093/hmg/ddaa021
  • Drewry MD, Challa P, Kuchtey JG, et al. Differentially expressed microRnas in the aqueous humor of patients with exfoliation glaucoma or primary open-angle glaucoma. Hum Mol Genet. 2018 Apr 1;27(7):1263–1275. doi: 10.1093/hmg/ddy040
  • Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015 Jul 1;29(13):1343–1355. doi: 10.1101/gad.262766.115
  • Jiang Y, Zhang X, Zhang X, et al. Comprehensive analysis of the transcriptome-wide m6A methylome in pterygium by MeRIP sequencing. Front Cell Dev Biol. 2021;9:670528. doi: 10.3389/fcell.2021.670528
  • Zhu L, Li S, He S, et al. The critical role of m(6)A methylation in the pathogenesis of graves’ ophthalmopathy. Eye Vis (Lond). 2020 Dec 1;7(1):55. doi: 10.1186/s40662-020-00221-3
  • Wen K, Zhang Y, Li Y, et al. Comprehensive analysis of transcriptome-wide m(6)A methylome in the anterior capsule of the lens of high myopia patients. Epigenetics. 2021 Sep;16(9):955–968. doi: 10.1080/15592294.2020.1834917
  • Hu J, Lin Y. Fusarium infection alters the m(6)A-modified transcript landscape in the cornea. Exp Eye Res. 2020 Nov;200:108216. doi: 10.1016/j.exer.2020.108216
  • Hengerer FH, Auffarth GU, Riffel C, et al. Second-generation trabecular micro-bypass stents as standalone treatment for glaucoma: a 36-month prospective study. Adv Ther. 2019;36(7):1606–1617. doi: 10.1007/s12325-019-00984-9
  • Guan J, Li Z, Wumaier A, et al. Critical role of transcriptome-wide m6A methylation in the aqueous humor of patients with pseudoexfoliation glaucoma. Exp Eye Res. 2023 Jun;231:109473. doi: 10.1016/j.exer.2023.109473
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001 Dec;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Galindo MI, Pueyo JI, Fouix S, et al. Peptides encoded by short ORFs control development and define a new eukaryotic gene family. PLOS Biol. 2007 May;5(5):e106. doi: 10.1371/journal.pbio.0050106
  • St Laurent G, Wahlestedt C, Kapranov P. The landscape of long noncoding RNA classification. Trends Genet. 2015 May;31(5):239–251. doi: 10.1016/j.tig.2015.03.007
  • Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017 Apr;54(3):2012–2021. doi: 10.1007/s12035-016-9793-6
  • Wan P, Su W, Zhuo Y. Precise long non-coding RNA modulation in visual maintenance and impairment. J Med Genet. 2017 Jul;54(7):450–459. doi: 10.1136/jmedgenet-2016-104266
  • Hauser MA, Aboobakar IF, Liu Y, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. 2015;24(22):6552–6563. doi: 10.1093/hmg/ddv347
  • Wu R, Jiang D, Wang Y, et al. N (6)-methyladenosine (m(6)A) methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol. 2016 Jul;58(7):450–459. doi: 10.1007/s12033-016-9947-9
  • Balacco DL, Soller M. The m(6)A Writer: rise of a machine for growing tasks. Biochemistry. 2019 Feb 5;58(5):363–378. doi: 10.1021/acs.biochem.8b01166
  • Krusnauskas R, Stakaitis R, Steponaitis G, et al. Identification and comparison of m6A modifications in glioblastoma non-coding RNAs with MeRIP-seq and Nanopore dRNA-seq. Epigenetics. 2023 Dec;18(1):2163365. doi: 10.1080/15592294.2022.2163365
  • Huang Y, Zhang W, Li Q, et al. Identification of m6A/m5C/m1A-associated LncRNAs for prognostic assessment and immunotherapy in pancreatic cancer. Sci Rep. 2023 Mar 4;13(1):3661. doi: 10.1038/s41598-023-30865-9
  • Xu Y, Yu X, Guo W, et al. Emerging role of interaction between m6A and main ncRnas in gastrointestinal (GI) cancers. Front Immunol. 2023;14:1129298. doi: 10.3389/fimmu.2023.1129298
  • Cao X, Song Y, Huang LL, et al. m(6)A transferase METTL3 regulates endothelial-mesenchymal transition in diabetic retinopathy via lncRNA SNHG7/KHSRP/MKL1 axis. Genomics. 2022 Nov;114(6):110498. doi: 10.1016/j.ygeno.2022.110498
  • Wang S, Lv W, Li T, et al. Dynamic regulation and functions of mRNA m6A modification. Cancer Cell Int. 2022 Jan 29;22(1):48. doi: 10.1186/s12935-022-02452-x
  • Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta stone of a hidden RNA language? Cell. 2011 Aug 5;146(3):353–358. doi: 10.1016/j.cell.2011.07.014
  • Mirzaei M, Gupta VB, Chick JM, et al. Age-related neurodegenerative disease associated pathways identified in retinal and vitreous proteome from human glaucoma eyes. Sci Rep. 2017 Oct 4;7(1):12685. doi: 10.1038/s41598-017-12858-7
  • Mowel WK, Kotzin JJ, McCright SJ, et al. Control of immune cell homeostasis and function by lncRnas. Trends In Immunology. 2018 Jan;39(1):55–69. doi: 10.1016/j.it.2017.08.009
  • Morlando M, Fatica A. Alteration of epigenetic regulation by long noncoding RNAs in cancer. IJMS. 2018 Feb 14;19(2):570. doi: 10.3390/ijms19020570
  • Zhou M, Lu B, Tan W, et al. Identification of lncRNA–miRNA–mRNA regulatory network associated with primary open angle glaucoma. BMC Ophthalmol. 2020 Mar 16;20(1):104. doi: 10.1186/s12886-020-01365-5
  • Gao Z, Li Q, Zhang Y, et al. Ripasudil alleviated the inflammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway. BMC Ophthalmol. 2020 Apr 6;20(1):134. doi: 10.1186/s12886-020-01400-5
  • Torrejon KY, Papke EL, Halman JR, et al. TGFβ2-induced outflow alterations in a bioengineered trabecular meshwork are offset by a rho-associated kinase inhibitor. Sci Rep. 2016 Dec 7;6(1):38319. doi: 10.1038/srep38319
  • Chen YS, Green CR, Danesh-Meyer HV, et al. Neuroprotection in the treatment of glaucoma–a focus on connexin43 gap junction channel blockers. Eur J Pharm Biopharm. 2015;95(Pt B):182–193. doi: 10.1016/j.ejpb.2015.01.031
  • Tellios N, Feng M, Chen N, et al. Mechanical stretch upregulates connexin43 in human trabecular meshwork cells. Clin Exp Ophthalmol. 2019 Aug;47(6):787–794. doi: 10.1111/ceo.13492
  • Xu MX, Zhao GL, Hu X, et al. P2X7/P2X4 receptors mediate proliferation and migration of retinal microglia in experimental glaucoma in mice. Neurosci Bull. 2022 Aug;38(8):901–915. doi: 10.1007/s12264-022-00833-w
  • Zhang Y, Xu Y, Sun Q, et al. Activation of P2X(7)R- NLRP3 pathway in retinal microglia contribute to retinal ganglion cells death in chronic ocular hypertension (COH). Exp Eye Res. 2019 Nov;188:107771. doi: 10.1016/j.exer.2019.107771
  • Schlüter A, Aksan B, Fioravanti R, et al. Histone deacetylases contribute to excitotoxicity-triggered degeneration of retinal ganglion cells in vivo. Mol Neurobiol. 2019 Dec;56(12):8018–8034. doi: 10.1007/s12035-019-01658-x