436
Views
0
CrossRef citations to date
0
Altmetric
Research Article

IL21R hypomethylation as a biomarker for distinguishing benign and malignant breast tumours

, , , , , & ORCID Icon show all
Article: 2352683 | Received 27 Oct 2023, Accepted 01 May 2024, Published online: 09 May 2024

References

  • Winters S, Martin C, Murphy D, et al. Breast cancer epidemiology, prevention, and screening. Prog Mol Biol Transl Sci. 2017;151:1–14.
  • Akram M, Iqbal M, Daniyal M, et al. Awareness and current knowledge of breast cancer. Biol Res. 2017;50(1):33. doi: 10.1186/s40659-017-0140-9
  • Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  • Rosa M, Agosto-Arroyo E. Core needle biopsy of benign, borderline and in-situ problematic lesions of the breast: diagnosis, differential diagnosis and immunohistochemistry. Ann Diagn Pathol. 2019;43:151407. doi: 10.1016/j.anndiagpath.2019.151407
  • McDonald ES, Clark AS, Tchou J, et al. Clinical diagnosis and management of breast cancer. J Nucl Med. 2016;57(Suppl 1):9S–16S. doi: 10.2967/jnumed.115.157834
  • Smits AJJ, Kummer JA, de Bruin PC, et al. The estimation of tumor cell percentage for molecular testing by pathologists is not accurate. Mod Pathol. 2014;27(2):168–174. doi: 10.1038/modpathol.2013.134
  • Nelson AM, Milner DA, Rebbeck TR, et al. Oncologic care and pathology resources in Africa: survey and recommendations. J Clin Oncol. 2016;34(1):20–26. doi: 10.1200/JCO.2015.61.9767
  • Solanki M, Visscher D. Pathology of breast cancer in the last half century. Hum Pathol. 2020;95:137–148. doi: 10.1016/j.humpath.2019.09.007
  • Zhang B, Cao M, He Y, et al. Combination of plasma HA and circulating M2-like monocytes may serve as a diagnostic marker for breast cancer. J Cancer. 2017;8(17):3522–3530. doi: 10.7150/jca.20227
  • Liu C, Sun B, Xu B, et al. A panel containing PD-1, IL-2Rα, IL-10, and CA15-3 as a biomarker to discriminate breast cancer from benign breast disease. Cancer Manag Res. 2018;10:1749–1761. doi: 10.2147/CMAR.S160452
  • Bhat SA, Majid S, Wani HA, et al. Diagnostic utility of epigenetics in breast cancer - a review. Cancer Treat Res Commun. 2019;19:100125. doi: 10.1016/j.ctarc.2019.100125
  • Selvakumar P, Badgeley A, Murphy P, et al. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients. 2020;12(3):761. doi: 10.3390/nu12030761
  • Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38. doi: 10.1038/npp.2012.112
  • Guenin S, Mouallif M, Deplus R, et al. Aberrant promoter methylation and expression of UTF1 during cervical carcinogenesis. PLOS ONE. 2012;7(8):e42704. doi: 10.1371/journal.pone.0042704
  • Hao X, Luo H, Krawczyk M, et al. DNA methylation markers for diagnosis and prognosis of common cancers. Proc Natl Acad Sci USA. 2017;114(28):7414–7419. doi: 10.1073/pnas.1703577114
  • Davalos V, Martinez-Cardus A, Esteller M. The epigenomic revolution in breast cancer: from single-gene to genome-wide next-generation approaches. Am J Pathol. 2017;187(10):2163–2174. doi: 10.1016/j.ajpath.2017.07.002
  • Farsetti A, Illi B, Gaetano C. How epigenetics impacts on human diseases. Eur J Internal Med. 2023;114:15–22. doi: 10.1016/j.ejim.2023.05.036
  • Croes L, de Beeck KO, Pauwels P, et al. DFNA5 promoter methylation a marker for breast tumorigenesis. Oncotarget. 2017;8:31948–31958. doi: 10.18632/oncotarget.16654
  • Naghitorabi M, Mohammadi-Asl J, Sadeghi HMM, et al. Quantitation of CDH1 promoter methylation in formalin-fixed paraffin-embedded tissues of breast cancer patients using differential high resolution melting analysis. Adv Biomed Res. 2016;5(1):91. doi: 10.4103/2277-9175.183139
  • Apolónio JD, Dias JS, Fernandes MT, et al. THOR is a targetable epigenetic biomarker with clinical implications in breast cancer. Clin Epigenetics. 2022;14(1):178. doi: 10.1186/s13148-022-01396-3
  • Paydar P, Asadikaram G, Nejad HZ, et al. Epigenetic modulation of BRCA-1 and MGMT genes, and histones H4 and H3 are associated with breast tumors. J Cell Biochem. 2019;120(8):13726–13736. doi: 10.1002/jcb.28645
  • Downs BM, Mercado-Rodriguez C, Cimino-Mathews A, et al. DNA methylation markers for breast cancer detection in the developing world. Clin Cancer Res. 2019;25(21):6357–6367. doi: 10.1158/1078-0432.CCR-18-3277
  • Mitwally N, Yousef E, Abd Al Aziz A, et al. Clinical significance of expression changes and promoter methylation of PLA2R1 in tissues of breast cancer patients. Int J Mol Sci. 2020;21(15):5453. doi: 10.3390/ijms21155453
  • Yang R, Stöcker S, Schott S, et al. The association between breast cancer and S100P methylation in peripheral blood by multicenter case–control studies. Carcinogenesis. 2017;38(3):312–320. doi: 10.1093/carcin/bgx004
  • Yin Q, Yang X, Li L, et al. The association between breast cancer and blood-based methylation of S100P and HYAL2 in the Chinese Population. Front Genet. 2020;11:977. doi: 10.3389/fgene.2020.00977
  • Guo T, Jiang L, Wang T, et al. Screening and identification of prognostic genes associated with eosinophilic features of clear cell renal cell carcinoma. Heliyon [Internet]. 2023 [cited 2024 Feb 10];9(6):e16479. doi: 10.1016/j.heliyon.2023.e16479
  • Wang C-Y, Chiao C-C, Phan NN, et al. Gene signatures and potential therapeutic targets of amino acid metabolism in estrogen receptor-positive breast cancer. Am J Cancer Res. 2020;10(1):95.
  • Anh ND, Thuong PH, Sim NT, et al. Maternal vascular endothelial growth factor receptor and interleukin levels in pregnant women with twin-twin transfusion syndrome. Int J Med Sci. 2021;18(14):3206. doi: 10.7150/ijms.61014
  • Tang Q, Cheng J, Cao X, et al. Blood-based DNA methylation as biomarker for breast cancer: a systematic review. Clin Epigenetics. 2016;8(1):115. doi: 10.1186/s13148-016-0282-6
  • Liu X, Peng Y, Wang J. Integrative analysis of DNA methylation and gene expression profiles identified potential breast cancer-specific diagnostic markers. Biosci Rep. 2020;40(5):BSR20201053. doi: 10.1042/BSR20201053
  • Lei S, Li L, Yang X, et al. The association between RAPSN methylation in peripheral blood and breast cancer in the Chinese population. J Hum Genet. 2021;66(11):1069–1078. doi: 10.1038/s10038-021-00933-x
  • Yin Y, Lei S, Li L, et al. RPTOR methylation in the peripheral blood and breast cancer in the Chinese population. Genes Genomics. 2022;44(4):435–443. doi: 10.1007/s13258-021-01182-0
  • Mehta DS, Wurster AL, Grusby MJ. Biology of IL-21 and the IL-21 receptor. Immunol Rev. 2004;202(1):84–95. doi: 10.1111/j.0105-2896.2004.00201.x
  • Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov. 2014;13(5):379–395. doi: 10.1038/nrd4296
  • Yang D-J, Han B. Roles of interleukin-21 and its receptor in autoimmune diseases. Zhongguo Dang Dai Er Ke Za Zhi. 2016;18(5):466–471. doi: 10.7499/j.issn.1008-8830.2016.05.017
  • Xue D, Yang P, Wei Q, et al. IL‑21/IL‑21R inhibit tumor growth and invasion in non‑small cell lung cancer cells via suppressing Wnt/β‑catenin signaling and PD‑L1 expression. Int J Mol Med. 2019;44:1697–1706. doi: 10.3892/ijmm.2019.4354
  • Zheng X, Zhou Y, Yi X, et al. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology. 2018;7(12):e1500673. doi: 10.1080/2162402X.2018.1500673
  • Linnebacher A, Mayer P, Marnet N, et al. Interleukin 21 Receptor/Ligand interaction is linked to disease Progression in pancreatic cancer. Cells. 2019;8(9):1104. doi: 10.3390/cells8091104
  • Araki A, Jin L, Nara H, et al. IL-21 enhances the development of colitis-associated colon cancer: possible involvement of activation-induced cytidine deaminase expression. J Immunol. 2019;202(11):3326–3333. doi: 10.4049/jimmunol.1800550
  • Wang L-N, Cui Y-X, Ruge F, et al. Interleukin 21 and its receptor play a role in proliferation, migration and invasion of breast cancer cells. Cancer Genomics Proteomics. 2015;12:211–221.
  • Yan L, Zhang J, Guo D, et al. IL-21R functions as an oncogenic factor and is regulated by the lncRNA MALAT1/miR-125a-3p axis in gastric cancer. Int J Oncol. 2019;54:7–16. doi: 10.3892/ijo.2018.4612
  • Anuraga G, Wang W-J, Phan NN, Ton NTA, Ta HDK, Prayugo FB, Xuan DTM, Ku S-C, Wu Y-F, Andriani V, et al. Potential prognostic biomarkers of NIMA (never in mitosis, gene A)-related kinase (NEK) family members in breast cancer. J personalized med [internet]. 2021 [cited 2024 Feb 10];11. Available from 11):1089. Available from: http://www-ncbi-nlm-nih-gov-s.webvpn.njmu.edu.cn:8118/pmc/articles/PMC8625415/
  • Anastasiadi D, Esteve-Codina A, Piferrer F. Consistent inverse correlation between DNA methylation of the first intron and gene expression across tissues and species. Epigenet Chromatin. 2018;11(1):37. doi: 10.1186/s13072-018-0205-1
  • Blattler A, Yao L, Witt H, et al. Global loss of DNA methylation uncovers intronic enhancers in genes showing expression changes. Genome Biol. 2014;15(9):469. doi: 10.1186/s13059-014-0469-0
  • Barakat TS, Halbritter F, Zhang M, et al. Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell. 2018;23(2):276–288.e8. doi: 10.1016/j.stem.2018.06.014
  • Wang Q, Xiong F, Wu G, et al. Gene body methylation in cancer: molecular mechanisms and clinical applications. Clin Epigenetics. 2022;14(1):154. doi: 10.1186/s13148-022-01382-9
  • Nam A-R, Lee K-H, Hwang H-J, et al. Alternative methylation of intron motifs is associated with cancer-related gene expression in both canine mammary tumor and human breast cancer. Clin Epigenetics. 2020;12(1):110. doi: 10.1186/s13148-020-00888-4
  • Gleason MX, Mdzinarishvili T, Sherman S, et al. Breast cancer incidence in black and white women stratified by estrogen and progesterone receptor statuses. PLOS ONE. 2012;7(11):e49359. doi: 10.1371/journal.pone.0049359
  • Huynh KT, Chong KK, Greenberg ES, et al. Epigenetics of estrogen receptor-negative primary breast cancer. Expert Rev Mol Diagn. 2012;12(4):371–382. doi: 10.1586/erm.12.26
  • Klar N, Rosenzweig M, Diergaarde B, et al. Features associated with long-term survival in patients with metastatic breast cancer. Clin Breast Cancer. 2019;19(4):304–310. doi: 10.1016/j.clbc.2019.01.014
  • Freelander A, Brown LJ, Parker A, et al. Molecular biomarkers for contemporary therapies in hormone receptor-positive breast cancer. Genes (Basel). 2021;12(2):285. doi: 10.3390/genes12020285
  • Bae SY, Kim S, Lee JH, et al. Poor prognosis of single hormone receptor- positive breast cancer: similar outcome as triple-negative breast cancer. BMC Cancer. 2015;15(1):138. doi: 10.1186/s12885-015-1121-4
  • Li JJX, Tse GM. Marker assessments in ER-positive breast cancers: old markers, new applications? Histopathology. 2023;82(2):218–231. doi: 10.1111/his.14767
  • Nicolini A, Ferrari P, Duffy MJ. Prognostic and predictive biomarkers in breast cancer: past, present and future. Semin Cancer Biol. 2018;52:56–73. doi: 10.1016/j.semcancer.2017.08.010
  • Beňačka R, Szabóová D, Guľašová Z, et al. Classic and new markers in diagnostics and classification of breast cancer. Cancers (Basel). 2022;14(21):5444. doi: 10.3390/cancers14215444
  • Li L, Lee K-M, Han W, et al. Estrogen and progesterone receptor status affect genome-wide DNA methylation profile in breast cancer. Hum Mol Genet. 2010;19(21):4273–4277. doi: 10.1093/hmg/ddq351
  • Swellam M, Saad EA, Sabry S, et al. Alterations of PTEN and SMAD4 methylation in diagnosis of breast cancer: implications of methyl II PCR assay. J Genet Eng Biotechnol. 2021;19(1):54. doi: 10.1186/s43141-021-00154-x
  • Yin L, Duan J-J, Bian X-W, et al. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi: 10.1186/s13058-020-01296-5
  • Mak JKL, McMurran CE, Kuja-Halkola R, et al. Clinical biomarker-based biological aging and risk of cancer in the UK biobank. Br J Cancer. 2023;129(1):94. doi: 10.1038/s41416-023-02288-w
  • Widschwendter M, Evans I, Jones A, et al. Methylation patterns in serum DNA for early identification of disseminated breast cancer. Genome Med [Internet]. 2017 [cited 2024 Feb 10];9(1). doi: 10.1186/s13073-017-0499-9
  • Smotherman C, Sprague B, Datta S, et al. Association of air pollution with postmenopausal breast cancer risk in UK biobank. Breast cancer research: BCR [internet]. 2023 [cited 2024 Feb 10];25(1). doi: 10.1186/s13058-023-01681-w